pco.pixelfly[™] 1.3 SWIR

the all new SWIR camera

VIS & SWIR sensitivity 400 to 1700 nm

> **small pixel size** 5 μm x 5 μm

long exposure times due to low dark current

excellent peak QE of 90 %

interface	USB 3.1 Gen 1
sensor technology	InGaAs
spectral range [nm]	400 to 1700
resolution [pixel]	1280 x 1024
sensor diagonal [mm]	8.2
pixel size [µm]	5 x 5
max. frame rate @ full resolution [fps]	71.5 (12 bit)
max. pixel rate [MPixel/s]	93.7 (12 bit)
peak QE	90 % @ 1200 nm
typ. read noise¹ [e⁻]	< 200
dark current @ sensor temperature [e⁻/pixel/s]	2000 @ +5 °C
max. dynamic range	680:1
shutter type	GS (Global Shutter)
sensor cooling ²	peltier with forced air
dimensions H x W x L [mm]	70 x 70 x 115

¹ The readout noise values are given as root mean square (rms).

All values are raw data without any filtering.

² air = air forced with fan

Extend the vision to SWIR

The pco.pixelfly[™] 1.3 SWIR is a high performance machine vision camera due to its special InGaAs image sensor which is sensitive in the shortwave infrared, near infrared and visible range of the electromagnetic spectrum. It shows a favorably high sensitivity in the whole spectral range with up to 90% in the shortwave infrared part. The small pixels enable the use of small magnification optics in microscopy and a low dark current for even longer exposure times.

