# User's Manual <br> (Preparation and Operation) 

Three-axis Stage Controller

SHRC-203

## Notes regarding these materials

- These materials are intended as a reference to assist our customers in the use of the SIGMAKOKI CO., LTD. Product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to SIGMAKOKI CO., LTD. or a third party.
- SIGMAKOKI CO., LTD. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagram, charts, programs, or algorithms contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by SIGMAKOKI CO.,LTD. without notice due to product improvements or other reasons.
- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithm, please be sure to evaluate all information and products. SIGMAKOKI CO., LTD. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- SIGMAKOKI CO., LTD. products are not designed or manufactured for use in equipment or system that is used under circumstances in which human life is potentially at stake. SIGMAKOKI CO., LTD. products cannot be used for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of SIGMAKOKI CO., LTD. is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or re-export contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.


## Contents

For Your Safety ..... 4
Chapter 1: Before You Begin ..... 6
1-1. Package Contents ..... 6
1-2. Overview ..... 6
1-3. The SHRC-203 System ..... 7
1-4. Parts and Functions ..... 7
Chapter 2: Connection Procedures ..... 9
2-1. SHRC-203 Connection Procedure ..... 9
2-2. Connecting to PC and Peripheral Device ..... 9
2-3. Connecting power cable ..... 9
2-4. Installing USB Drivers ..... 10
Chapter 3: Settings ..... 11
3-1. Set up SHRC-203 ..... 11
3-2. List of Memory Switch Items ..... 15
3-3. Mark attached to the setting value of Memory Switch ..... 15
3-4. List of each Memory Switch Contents and Detailed Settings ..... 16
Chapter 4: Operations ..... 39
4-1. Screen Description ..... 39
4-2. Indicators Description. ..... 40
4-3. Move the Motorized Stage with the Front Pnel or Peripherals ..... 41
4-4. Move the Motorized Stage on a personal computer ..... 41
Chapter 5: How to Use Useful Features ..... 42
5-1. Recording Positions in Teaching Mode ..... 43
5-2. Editing Programs in Edit Mode ..... 47
5-3. Move Motorized Stage according to Program ..... 64
5-4. Testing I/O Signal Connections ..... 68
5-5. Output the Trigger Signal to an External Device ..... 71
5-6. Check Controller Information and Communication Settings ..... 76
5-7. Other Features ..... 77
Chapter 6: Connector Pin Numbers and Signals ..... 78
6-1. I/O Signals ..... 78
6-2. Terminal Block ..... 84
6-3. STAGE 1 ~ 3 Connector ..... 84
6-4. SCALE 1 ~ 3 Connector ..... 84
6-5. USB Connector ..... 85
6-6. Ethernet Connector ..... 85
6-7. GP-IB Connector ..... 85
6-8. OPTION Connector ..... 86
Chapter 7: I/O Circuits and Connection Examples ..... 87
7-1. Input/Output Circuit ..... 87
7-2. Reference Circuit ..... 87
Chapter 8: Alarm ..... 89
Chapter 9: Specifications ..... 93
9-1. Specifications ..... 93
9-2. Outlines ..... 95

## For Your Safety

Before using this product, read this manual and all warnings or cautions in the documentation provided. Only Factory Authorized Personnel should be changes and/or adjust the parts of controller.

The Symbols Used in This Manual

| WARNING |  |
| :--- | :--- |
| This symbol marks warnings that should be read <br> and used to prevent serious injury or death. | This symbol indicates where caution should be <br> used to avoid possible injury to yourself or others, <br> or damage to property. |

The above indications are used together with the following symbols to indicate the exact nature of the warning or caution.

|  | Examples of Symbols Accompanying Warnings and Cautions <br> of the warning or caution is indicated by the symbol inside (the symbol at left <br> indicates risk of electrocution). |
| :--- | :--- |
| oSymbols enclosed in a circle mark indicate prohibitions (actions that must not be |  |
| performed). The exact nature of the prohibition is indicates by the symbol inside or |  |
| next to the circle mark (the symbol at left indicates that the product must not be |  |
| disassembled). |  |
| -Symbols inside a black circle mark actions that must be performed to ensure |  |
| safety. The exact nature of the action that must be performed is indicated by the |  |
| symbol inside (the symbol at left is used in cases in which the AC adapter must be |  |
| unplugged to ensure safety). |  |

## Symbols on the product

The symbol mark on the product calls your attention. Please refer to the manual, in the case that you operate the part of the symbol mark on the product.


This symbol labeled on the portion calls your attention.

## Disclaimer of Liability

(1) SIGMAKOKI CO., LTD. does not accept liability for damages resulting from the use of this product or the inability to use this product.
(2) SIGMAKOKI CO., LTD. does not accept liability for damages resulting from the use of this product that deviates from that described in the manual.
(3) SIGMAKOKI CO., LTD. does not accept liability for damages resulting from the use of this product in extraordinary conditions, including fire, earthquakes, and other acts of God, action by any third party, other accidents, and deliberate or accidental misuse.
(4) If the equipment is used in a manner not specified by the SIGMAKOKI CO., LTD., the protection provided by the equipment may be impaired.


- Do not use this product in the presence of flammable gas, explosives, or corrosive substances, in areas exposed to high levels of moisture or humidity, in poorly ventilated areas, or near flammable materials.
- Do not connect or check the product while the power is on.
- Installation and connection should be performed only by a qualified technician.
- Do not bend, pull, damage, or modify the power or connecting cables.
- Do not touch the products internal parts.
- Connect the earth terminal to ground.
- Should the product overheat, or should you notice an unusual smell, heat, or unusual noises coming from the product, unplug the power cord from the AC connector immediately.
- Do not turn on the power in the event that it has received a strong physical shock as the result of a fall or other accident.
- There is an intake slit on the right side and an exhaust slit for the cooling fan on the left side. To prevent the internal temperature from rising, do not block the intake / exhaust slits. Also, provide a space of 50 mm or more on both sides.
- Do not touch the stage while operation.
- Use dry clothes only for cleaning the equipment.


## Chapter 1: Before You Begin

## 1-1. Package Contents

Purchasers of the Stage Controller should find that the package contains the items listed below. Check the package contents using the following checklist. Contact your retailer as soon as possible in the event that you should find that any item is missing or damaged.
$\square$ SHRC-203 Stage Controller :1
$\square$ User's Manual (This Manual) :1
$\square$ AC Power Cable :1

The user's manual for commands is not included, so please download it from the following website address.

- Three-axis Stage Controller SHRC-203 User's Manual (Command) SHOT / FC mode
- Three-axis Stage Controller SHRC-203 User's Manual (Command) HIT mode View our home page
https://jp.optosigma.com/en_ip/software motorize controller-manual


## 1-2. Overview

This controller is a stage controller for 3-axis total closed-loop control supporting glass scale and has a built-in driver to drive a 5 -phase stepping motor, enabling independent control for each axis. Compatible with existing models, this controller offers excellent applicability across a wide range of requirements at a low cost.
When the SHRC-203 is connected to an ordinary personal computer via an USB, GP-IB or Ethernet interface, the stage can be accurately moved to the desired position by simple commands sent from the PC. Also, it is possible to save internal data via program data downloads and uploads. The program has been simplified for ease of construction of complicated control systems. Internal power supply for I/O (Input / Output) signals, trigger output signals, and DC24V output signals makes it possible to control external input or output devices or to output trigger signals synchronized with external measuring devices. In addition, manual operation is possible facility by connecting JOYSTICK, etc. (an optional product).

## 1-3. The SHRC-203 System



## 1-4. Parts and Functions



SHRC-203 Rear Panel


Functions :
(1) POWER switch :
(2) Operation switches:
(3) Indicators led:
(4) Display panel:
(5) OPTION connector :
(6) GP-IB connector:
(7) Ethernet connector: This connector is used when the device is controlled from the computer via an Ethernet interface.
Green : Lights up when the communication speed is 100 Mbps , and turns off when the communication speed is 10 Mbps or when the cable is not connected.
Yellow : Lights up when a valid link is detected and blinks when data transmission or reception is detected.
(9) USB connector:
(10) I/O connector:
(11) Terminal panel :
(12) Stage driving connectors:
(13) Scale connectors:
(14) AC connector:

The product is on when the switch is set to $\mathrm{ON}(\mathrm{ll} \mid \mathrm{lide})$. Set the switch to OFF("O" side) to turn the product off.
These switches can be used to operate the stage, operate the Memory switch, perform sleep, and disable the operation switches.
The axis on which the stage can be operated by the operation switch, sleep execution, and operation switch invalidity are displayed by lighting the lamp.
Displays the position coordinates for each axis and the operating mode.
This connector is used when the JS-301/JB-401/JD-101/MD-400.
*) About the usage of OPTION (JS-301 / JB-401 / JD-101 / MD-400), confirm various User's manual.
This connector is used when the device is controlled from the computer via a GP-IB interface.
*) GP-IB communication has been tested with National Instruments GPIB-USB-HS+ and 778930-01.
(8) Status LED (Ethernet) :
,

\left.| Type | Connecter | Cord | Attachment plug cap |
| :--- | :--- | :--- | :--- |
| AC100-120 [V] | Use the detachable power cord set attached to the product only. |  |  |
| AC200-240 [V] | IEC C-13 | Type SJT, No16 AWG Min. | Rated 7[A],250[V] |
|  | Rated 7[A], 250[V] | 3-Conductors |  |
|  | UL, CSA Approved | (Single phased;2-current carrying \& ground) |  |
|  | UL, CSA Approved Approved |  |  |$\right]$

Cable length of above Power Supply cord shall be shorter than $4.5[\mathrm{~m}]$.

| $\|$Should the product overheat, or should you notice an unusual smell, heat, or unusual noises <br> comina from the product, unplua the power cord from the AC connector immediatelv. |
| :--- |
| (15) Earth terminal : Ground the equipment when in use. |
| For your own safety, make sure POWER is OFF before connecting every cable. |

## Chapter 2: Connection Procedures

## 2-1. SHRC-203 Connection Procedure

First, connect SHRC-203 to the motorized stages.
(1) Make sure the SHRC-203 power switch is off.
(2) For stepping motor specification motorized stages (OSMS series, OSCM series, ACT series, VSGSP series, TAMM series), please prepare D15D15A/D15RP-CA cable. For OSMS (CS) series and HST (GS) series motorized stages with scale-mounted stepping motor specifications, please prepare D15D15A-CA and GSEF-CA cables. For NFS series, please prepare D15H12A-RC and DM15HD14A-RC cables.
(3) Connect the stage to be controlled as the first axis to the STAGE1 connector of the SHRC-203 controller. Also connect the stage controlled as the second axis to the STAGE2 connector. Also connect the stage controlled as the third axis to the STAGE3 connector.
For scale-mounted specifications, also connect to each SCALE connector.

## 2-2. Connecting to PC and Peripheral Device

Connect the SHRC-203 to a PC and peripherals (JS-301/JB-401/JD-101/MD-400).
(1) Make sure the SHRC-203 power switch is off.
(2) For USB, use the USB cable on the TypeA/TypeB male connector to connect it to the USB (Type B) connector on the SHRC-203. Connect the USB (Type A) connector to your PC. (Genuine cable : for example, model number is USB-1A / USB-2A)
Also, when use the USB cable on the Type C / Type B male connector to connect it to the USB (Type B) connector on the SHRC-203 in the same way. Connect the USB (Type C) connector to your PC.
(3) For Ethernet, use a LAN cable to connect. (It can be cross or straight.)
(4) For GP-IB, connect using GP-IB cable.

When using peripheral devices, connect peripheral devices by the procedures (5) to (6).
(5) Use the dedicated cable MDR14-CA-2.5 for peripheral cables.
(6) The one side of MDR14-CA is connected with the connector of the peripheral device. The connector on the other side of MDR14-CA is connected with the OPTION connector of SHRC-203.

## 2-3. Connecting power cable

Connect the supplied power cable to the AC connector on the rear panel of SHRC-203 to plug the cable into an outlet.

[^0]
## 2-4. Installing USB Drivers

When using a USB cable to control from a PC, it is necessary to first install the driver on the PC side.

Please download the driver from our website.
After the download is complete, install the driver.
View our home page https://jp.optosigma.com/ja ip/software usb

For Windows 10 and 11, installation of this driver is not required.

## Chapter 3: Settings

## 3-1. Set up SHRC-203

Various settings of SHRC-203 are set by the Memory switch.
Memory switch settings can be changed using front panel operations, commands, and sample software (SGSample).
When changing Memory switch settings use the Sample software (SGSample), which can be downloaded from https://jp.optosigma.com/en ip/software sample

## 3-1-1. Operation on the Front Panel

Pressing the [AXIS] button while hold down the [MODE] button in the MANUAL mode top screen switches to the classification selection screen. The Memory switch settings can be changed using the following front panel buttons.


Fig. 3-1. MANUAL Mode Top screen

> GENERAL
> 01 AXIS
> $1+2+3$
> RETURN:
(L)

Fig. 3-3. Memory Switch Editing screen

| GENERAL | $(\uparrow \downarrow)$ |
| :--- | ---: |
| EDIT: | $(\rightarrow)$ |
| SAVE\&INITIAL $:(A)$ |  |
| RETURN: | $(L)$ |

Fig. 3-2. Classification Selection screen

```
SAVE EXIT:
NO SAVE EXIT:( \(\downarrow\) )
INITIAL: ( \(\rightarrow\) )
RETURN: (L)
```

Fig. 3-4. Registration screen

```
INITIALIZE?
INITIAL EXIT:(\uparrow)
RETURN: (L)
```

Fig. 3-5. Initialization screen
[+JOG] (1) : Change the classification item.
(GENERAL $\rightarrow$ INTERFACE $\rightarrow \ldots$ SOFT LIMIT $\rightarrow$ GENERAL)
(2) : Change the setting items. ( $\mathrm{No} . \mathrm{N}-1 \rightarrow \mathrm{~N} \rightarrow 1 \rightarrow 2$ )
(3) : Register the change data and return to the MANUAL mode top screen.
(4) : Execute and register initialization and return to MANUAL mode top screen.
[-JOG] (1) : Change the classification item.
(GENERAL $\rightarrow$ SOFT LIMIT $\rightarrow \ldots \rightarrow$ INTERFACE $\rightarrow$ GENERAL)
(2) : Change the setting items. ( $\mathrm{No} .2 \rightarrow 1 \rightarrow \mathrm{~N} \rightarrow \mathrm{~N}-1$ )
(3) : Discard the change data and return to MANUAL mode top screen.
[MORG] (1) : Change to the Memory switch editing screen for editing.
(2) : Move the cursor to the right digit.
(3) : For initialization, it changes to the initialization screen.
[EORG] Move the cursor to the left digit.
[ZERO] Change the settings. For numeric data, it increases.
[AXIS] (1) : Change the settings. For numeric data, it decreases.
(2) : To register the edits, the display changes to the registration screen.
[LOCK] (1) : Cancel the edit and return to manual mode top screen.
(2) : Keep the edits and return to the classification selection screen.
(3) : Cancel registration and return to the Memory switch editing screen.
(4) : Cancel initialization and return to the registration screen.

1) MANUAL Mode Selection


To enter MANUAL mode, press the [MODE] button until the upper left of the display becomes " M ".
It changs to HOST "H" $\rightarrow$ MANUAL "M" $\rightarrow$ REMOTE "R" $\rightarrow$ TEACHING "T" $\rightarrow$ EDIT "E" $\rightarrow$ TEST "S" $\rightarrow$ HOST "H".
2) Memory Switch Edit Target Selection

$$
\begin{array}{lr}
\text { GENERAL } & (\uparrow \downarrow) \\
\text { EDIT: } & (\rightarrow) \\
\text { SAVE\&INITIAL }:(\mathrm{A}) \\
\text { RETURN: } & (\mathrm{L})
\end{array}
$$

(1) After selecting MANUAL mode, hold down the [MODE] button and press the [AXIS] button, and select the Memory switch item with the [+JOG] ( $\uparrow$ ) or [-JOG] ( $\downarrow$ ) button. With the [+ JOG] ( $\uparrow$ ) button, "GENERAL" $\rightarrow$ "INTERFACE" $\rightarrow$ "SENSOR" $\rightarrow$ "AXIS" $\rightarrow$ "MOTOR DRIVER" $\rightarrow$ "SPEED" $\rightarrow$ "ORG" $\rightarrow$ "FEEDBACK" $\rightarrow$ "SOFT LIMIT" $\rightarrow$ "GENERAL" it will change. The [-JOG] ( $\downarrow$ ) button is reversed.
(2) Select the item to be changed and press the [MORG] $(\rightarrow)$ button to confirm.

To return to "1) MANUAL mode selection," press the [LOCK] (L) button.
As an operation example, "03 GP-IB ADDR" of "INTERFACE" will be changed from " 8 " to " 18 ". Select "INTERFACE" and press the [MORG] $(\rightarrow)$ button.
3) Memory Switch Edit

| INTERFACE |  |  |  |
| :--- | :--- | :--- | :--- |
| 03 | GP-IB | ADDR |  |
|  |  | $\underline{8}$ |  |
| RETURN: |  | $(L)$ |  |

(1) Select the contents to be changed by clicking [+JOG] ( $\uparrow$ ) or [-JOG] ( $\downarrow$ ) button. In this example, press until "03 GP-IB ADDR" is displayed.
(2) Move the cursor with the $[\mathrm{MORG}](\rightarrow)$ or $[E O R G](\leftarrow)$ button and change the value with the [ZERO] (UP) or [AXIS] (DOWN) button. In this example, move the cursor to the second digit and change it to "18" with the [ZERO] (UP) button.
For selection types, there is no cursor.

(3) To change another Memory switch item or exit editing, press the [LOCK] button.

The changes are kept and returned to "2) Memory switch editing target selection". (If the Memory switch is changed, line 4 changes to "NO SAVE EXIT".)

```
GENERAL (\uparrow\downarrow)
EDIT: (->)
SAVE&INITIAL:(A)
NO SAVE EXIT:(L)
```

(4) To save the changes, press [AXIS] (A).

To return to "1) MANUAL mode selection", press the [LOCK] (L) button.
4) Memory Switch Registration

```
SAVE EXIT
(\uparrow)
NO SAVE EXIT:(\downarrow)
INITIAL: ( }
RETURN: (L)
```

(1) To save changes and exit, press the [+JOG] ( $\uparrow$ ) button.

The display returns to "1) MANUAL mode selection.
(2) To discard the changes and exit, press the [-JOG] ( $\downarrow$ ) button.

The display returns to "1) MANUAL mode selection.
(3) To restore the factory settings, press the $[\mathrm{MORG}](\rightarrow)$ button.

Then press [+JOG] ( $\uparrow$ ) button.
To return to "4) Memory Switch Registration," press the [LOCK] (L) button.

```
INITIALIZE?
INITIAL EXIT:(\uparrow)
RETURN:
    (L)
```


## 3-1-2. Operation with Command

When editing from a personal computer, after transition from the HOST mode to the Memory Switch Edit mode, edit using the "Command" in the table and the "Command setting" and "Setting range" in the description.
Available commands are shown below.

| MS : ON | Transition to Memory Switch Edit mode. |
| :--- | :--- |
| MS : SET(K) | Set the contents of the Memory switch. |
| MS : GET(K) | Get the contents of the Memory switch. |
| MS : DEF(K,R,RK) | Initialize the Memory switch contents. |
| MS : OFF | Return to the HOST mode. |

For commands, refer to the separate "SHRC-203 User's Manual (Command)".

## 3-2. List of Memory Switch Items

| Item | Contents | Remarks | Command |
| :--- | :--- | :--- | :--- |
| GENERAL | General settings | Axis setting, etc. | 0 |
| INTERFACE | Communication settings | Interfeiss settings, etc. | 1 |
| SENSOR | Sensor settings | Logic, etc. | 2 |
| AXIS | Axis settings | Stage type, etc. | 3 |
| MOTOR DRIVER | Motor driver settings | Number of divisions setting, etc. | 4 |
| SPEED | Speed setting | Speed selection, etc. | 5 |
| ORG | Return to origin setting | Return method, etc. | 6 |
| FEEDBACK | FEEDBACK control settings | Control system, etc. | 7 |
| SOFT LIMIT | Soft limit setting | Limit coordinate setting, etc. | 8 |

## 3-3. Mark attached to the setting value of Memory Switch

The following marks is attached to the front side of the setting value of the item to be read when "AXIS"-"CONFIGx" is ON (some items are read even if it is OFF) by connecting the stage equipped with the auto config ROM.
**: This item is loaded even when OFF, and the setting cannot be changed.
*: This is an item that is read even when OFF, and changing "FEEDBACK" - "CONT1 to 3 " to "OPEN" will enable setting changes.
\#: This item is read only when ON. If "\#" is marked, the setting can be changed, but the changes will be overwritten as the data is read when the power is turned on again. To save changes, turn it OFF before setting.


## 3-4. List of each Memory Switch Contents and Detailed Settings

3-4-1. GENERAL (Command: 0)

| No | Memory switch contents | Setting range / Select items | Initial value / setting | Command |
| :---: | :---: | :---: | :---: | :---: |
| 1 | AXIS | 1, 2, 3, 1+2, 1+3, 2+3, 1+2+3 | 1+2+3 | 0 |
| 2 | MODE SEL | HOST, MANUAL, REMOTE, TEACHING, EDIT, TEST | HOST | 1 |
| 3 | SLEEP SEL | OFF, ON | ON | 2 |
| 4 | BEEP SEL | OFF, ON | ON | 3 |
| 5 | JOG X SEL | 1, 2, 3 | 1 | 4 |
| 6 | JOG Y SEL | 1, 2, 3 | 2 | 5 |
| 7 | CMD FORMAT | SHOT/FC, HIT | SHOT/FC | 6 |
| 8 | TRG/LEV | HI, LO | HI | 7 |
| 9 | TRG WIDTH | 10, 100, 1000 | 10 | 8 |

1) AXIS : Set the controllable axis.
[Select items] 1 : Valid only for the 1st axis
2 : Valid only for the 2nd axis
[Command setting : 0]

3 : Valid only for the 3rd axis
[Command setting : 1]
[Command setting : 2]
$1+2$ : 1st axis, 2nd axis valid
$1+3$ : 1st axis, 3rd axis valid
[Command setting : 3]

2+3: 2nd axis, 3rd axis valid
[Command setting : 4]
$1+2+3$ : Valid for all axes
[Command setting : 5]
[Command setting : 6]
2) MODE SEL: Set the initial operating mode after powering up.
(It is necessary to turn on the power again for the reflection.)
[Select items] HOST : HOST Mode
MANUAL : MANUAL mode
[Command setting : 0]

REMOTE : REMOTE mode
TEACHING: TEACHING MODE
[Command setting : 1]
[Command setting : 2]

EDIT : EDIT mode
TEST : TEST mode
[Command setting : 3]
[Command setting : 4]
[Command setting : 5]
3) SLEEP SEL : Set whether to enable or disable the sleep function.
[Select items] OFF : Disable
[Command setting : 0]
ON : Enable
[Command setting : 1]
4) BEEP SEL : Set whether to enable or disable the beep.
[Select items] OFF : Disable
[Command setting : 0]
ON : Enable
[Command setting : 1]
5) JOG X SEL : Set the X-axis operation stage of the peripheral device.
[Select items] 1: 1st axis
[Command setting : 0]
2: 2nd axis
[Command setting : 1]
3 : 3rd axis
[Command setting : 2]
6) JOG Y SEL : Set the Y-axis operation stage of the peripheral device.
[Select items] 1: 1st axis
[Command setting : 0]
2:2nd axis
[Command setting : 1]
3 : 3rd axis
[Command setting : 2]
7) CMD FORMAT : Set the command format.
(It is necessary to turn on the power again for the reflection.)
[Select items] SHOT/FC : SHOT and FC command format [Command setting : 0] HIT : HIT command format
[Command setting : 1]
8) TRG/LEV: Set the trigger output logic.
[Select items] HI : Positive (Active High)
[Command setting : 0]
LO : Negative (Active Low)
[Command setting : 1]
9) TRG WIDTH : Set the trigger output pulse width.
[Select items] 10:10 10 sec
[Command setting : 0]
100: 100 $\mu \mathrm{sec}$
[Command setting : 1]
1000: 1000 $\mu \mathrm{sec}$
[Command setting : 2]

3-4-2. INTERFACE (Command: 1)

| No | Memory switch <br> contents | Setting range / Select items | Initial value / <br> setting | Command |
| ---: | :--- | :--- | :--- | :--- |
| 1 | INTERFACE | USB, ETHR, GP-IB | USB | 0 |
| 2 | DELIMIT | CR, LF, CRLF, EOI | CRLF | 1 |
| 3 | GP-IB ADDR | $1 \sim 30$ | 8 | 2 |
| 4 | ETHR DHCP | OFF | OFF | 3 |
| 5 | ETHR IPADDR | $000000000000 \sim 255255255255$ | 192168000001 | 4 |
| 6 | ETHR DGW | $000000000000 \sim 255255255255$ | 192168000001 | 5 |
| 7 | ETHR SNM | $000000000000 \sim 252555255255$ | 255255255000 | 6 |
| 8 | ETHR PORT | $0 \sim 65535$ | 9004 | 7 |
| 9 | COMM/ACK | MAIN, SUB, ECHO | MAIN | 8 |
| 10 | POSOUT | OFF, ON | ON | 9 |

1) INTERFACE : Set the communication interface.
[Select items] USB : USB
[Command setting : 0]
ETHR : Ethernet
[Command setting : 1]
GP-IB : GP-IB
[Command setting : 2]
2) DELIMIT : Set the delimiter.
[Select items] CR:CR
[Command setting : 0]
LF: LF
[Command setting : 1]
CRLF: CR+LF
[Command setting : 2]
EOI: EOI
[Command setting : 3]
*) EOI can only be used when GP-IB is selected.
3) GP-IB ADDR : Set the GP-IB address.
[Setting range] 1~30
4) ETHR DHCP : Set the Ethernet DHCP client function.
[Select items] OFF : Disables queries to the DHCP server. [Command setting : 0]
5) ETHR IPADDR : Set the Ethernet IP address.
(It is necessary to turn on the power again for the reflection.)
[Setting range] 0000000000000 ~ 255255255255
6) ETHR DGW : Set the Ethernet default gateway.
(It is necessary to turn on the power again for the reflection.)
[Setting range] 0000000000000 ~ 255255255255
7) ETHR SNM : Set the Ethernet subnet mask.
(It is necessary to turn on the power again for the reflection.)
[Setting range] 0000000000000 ~ 255255255255
8) ETHR PORT : Set Ethernet port number.
(It is necessary to turn on the power again for the reflection.)
[Setting range] $0 \sim 65535$
9) COMM/ACK: Set the communication protocol.
[Select items] MAIN : Reply OK if the process is completed successfully, NG or NG_I in case of error.
[Command setting : 0]
SUB : No reply regardless of normal or error.
[Command setting : 1]
ECHO : Reply as it is sent content.
[Command setting : 2]
In case of information acquisition command or error, what was sent Add status or NG or NG_I to and reply.

Example 1 Normal (Configuration command)

| COMM/ACK settings | Send | Reply |
| :--- | :--- | :--- |
| MAIN | BO:1 | OK |
| SUB | BO:1 |  |
| ECHO | BO:1 | BO:1 |

Example 2 Error (Configuration command)

| COMM/ACK settings | Send | Reply 1 | Reply 2 |
| :--- | :--- | :--- | :--- |
| MAIN | BO:2 | NG | NG_I |
| SUB | BO:2 |  |  |
| ECHO | BO:2 | BO:2,NG | NG_I |

Example 3 Normal (Information acquisition command)

| COMM/ACK settings | Send | Reply |
| :--- | :--- | :--- |
| MAIN | BO? | 1 |
| SUB | BO? | 1 |
| ECHO | BO? | BO?,1 |

Example 4 Error (Information Retrieval Command)

| COMM/ACK settings | Send | Reply 1 | Reply 2 |
| :--- | :--- | :--- | :--- |
| MAIN | BO?1 | NG | NG_I |
| SUB | BO?1 |  |  |
| ECHO | BO?1 | BO?1,NG | NG_I |

10) POSOUT : Set whether or not the current coordinate values are transmitted from the communication interface in use during teaching registration.
[Select items] OFF : Transmission disabled
[Command setting : 0]
ON : Transmission enabled
[Command setting : 1]

3-4-3. SENSOR (Command: 2)

| No | Memory switch <br> contents | Setting range / Select items | Initial value / setting | Command |
| ---: | :--- | :--- | :--- | :--- |
| 1 | LS/LEV1 | NORMAL CLOSE, NORMAL OPEN | NORMAL CLOSE | 0 |
| 2 | LS/LEV2 | NORMAL CLOSE, NORMAL OPEN | NORMAL CLOSE | 1 |
| 3 | LS/LEV3 | NORMAL CLOSE, NORMAL OPEN | NORMAL CLOSE | 2 |
| 4 | ORGS/LEV1 | NORMAL CLOSE, NORMAL OPEN | NORMAL OPEN | 3 |
| 5 | ORGS/LEV2 | NORMAL CLOSE, NORMAL OPEN | NORMAL OPEN | 4 |
| 6 | ORGS/LEV3 | NORMAL CLOSE, NORMAL OPEN | NORMAL OPEN | 5 |
| 7 | NEARS/LEV1 | NORMAL CLOSE, NORMAL OPEN | NORMAL OPEN | 6 |
| 8 | NEARS/LEV2 | NORMAL CLOSE, NORMAL OPEN | NORMAL OPEN | 7 |
| 9 | NEARS/LEV3 | NORMAL CLOSE, NORMAL OPEN | NORMAL OPEN | 8 |

1~3) LS LVL1~3: Set the limit sensor input logic for each axis.
[Select items] NORMAL CLOSE : Normally closed
[Command setting : 0]
(Switches from ON to OFF when the limit sensor is detected.)
NORMAL OPEN : Normally open [Command setting : 1]
(Switches from OFF to ON when the limit sensor is detected.)

4 ~ 6) ORGS/LEV1~3: Set the ORG sensor input logic for each axis.
[Select items] NORMAL CLOSE : Normally closed [Command setting : 0]
(Switches from ON to OFF when the ORG sensor is detected.)
NORMAL OPEN : Normally open
[Command setting : 1]
(Switches from OFF to ON when the ORG sensor is detected.)

7 ~ 9) NEARS/LEV1 ~ 3 : Set the NEAR sensor input logic for each axis.
[Select items] NORMAL CLOSE : Normally closed [Command setting : 0] (Switches from ON to OFF when the NEAR sensor is detected.)
NORMAL OPEN : Normally open
[Command setting : 1]
(Switches from OFF to ON when the NEAR sensor is detected.)

3-4-4. AXIS (Command: 3)

| No | Memory switch contents | Setting range / Select items | Initial value / setting | Command |
| :---: | :---: | :---: | :---: | :---: |
| 1 | STAGE TYPE1 | LINEAR, ROTATE, GONIO | LINEAR | 0 |
| 2 | STAGE TYPE2 | LINEAR, ROTATE, GONIO | LINEAR | 1 |
| 3 | STAGE TYPE3 | LINEAR, ROTATE, GONIO | LINEAR | 2 |
| 4 | BASE RATE1 | 1~10000 | 200 | 3 |
| 5 | BASE RATE2 | 1~10000 | 200 | 4 |
| 6 | BASE RATE3 | 1 ~ 10000 | 200 | 5 |
| 7 | MOVE1 | POS, NEG | POS | 6 |
| 8 | MOVE2 | POS, NEG | POS | 7 |
| 9 | MOVE3 | POS, NEG | POS | 8 |
| 10 | ACC CONT1 | S CURVE, LINEAR | LINEAR | 9 |
| 11 | ACC CONT2 | S CURVE, LINEAR | LINEAR | 10 |
| 12 | ACC CONT3 | S CURVE, LINEAR | LINEAR | 11 |
| 13 | STAGE1 UNIT | PULSE, NANO, MICRO, MILLI, DEG, SENSOR PULSE, SENSOR NANO, SENSOR MICRO, SENSOR MILLI, SENSOR DEG | PULSE | 12 |
| 14 | STAGE2 UNIT | PULSE, NANO, MICRO, MILLI, DEG, SENSOR PULSE, SENSOR NANO, SENSOR MICRO, SENSOR MILLI, SENSOR DEG | PULSE | 13 |
| 15 | STAGE3 UNIT | PULSE, NANO, MICRO, MILLI, DEG, SENSOR PULSE, SENSOR NANO, SENSOR MICRO, SENSOR MILLI, SENSOR DEG | PULSE | 14 |
| 16 | EMG MT EXCT1 | OFF, ON | OFF | 15 |
| 17 | EMG MT EXCT2 | OFF, ON | OFF | 16 |
| 18 | EMG MT EXCT3 | OFF, ON | OFF | 17 |
| 19 | EMG BT EXCT | OFF, ON | ON | 18 |
| 20 | AXIS NAME1 | 1~9, A ~ Z | 1 | 19 |
| 21 | AXIS NAME2 | 1 ~ 9, A ~ Z | 2 | 20 |


| No | Memory switch <br> contents | Setting range / Select items | Initial value / <br> setting | Command |
| :--- | :--- | :--- | :--- | :--- |
| 22 | AXIS NAME3 | $1 \sim 9$, A ~ Z | 3 | 21 |
| 23 | LMT FEEDBACK1 | OFF, ON | OFF | 22 |
| 24 | LMT FEEDBACK2 | OFF, ON | OFF | 23 |
| 25 | LMT FEEDBACK3 | OFF, ON | OFF | 24 |
| 26 | LMT STOP SEL1 | SD STOP, LM STOP | LM STOP | 25 |
| 27 | LMT STOP SEL2 | SD STOP, LM STOP | LM STOP | 26 |
| 28 | LMT STOP SEL3 | SD STOP, LM STOP | LM STOP | 27 |
| 29 | CD DRIVE1 | OFF, ON | OFF | 28 |
| 30 | CD DRIVE2 | OFF, ON | OFF | 29 |
| 31 | CD DRIVE3 | OFF, ON | OFF | 30 |
| 32 | CONFIG1 | OFF, ON | ON | 31 |
| 33 | CONFIG2 | OFF, ON | ON | 32 |
| 34 | CONFIG3 | OFF, ON | ON | 33 |

$1 \sim 3$ ) STAGE TYPE $1 \sim 3$ : Set the stage type of each axis.
[Select items] LINEAR : Linear motion stage [Command setting : 0] ROTATE : Rotation stage [Command setting : 1]
(Limit sensor is invalid except for mechanical origin return operation)
GONIO : Gonio stage
[Command setting : 2]
$4 \sim 6$ ) BASE RATE $1 \sim 3$ : Sets the amount of movement per pulse at full step of each axis.
[Setting range] $1 \sim 10000$

| Stage | XYZ Linear motion stage |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Screw lead | 1 mm |  |  |  |  |  |  |  |  |  | 2 mm | 5 mm |
| Stepping <br> motor type | Harmonic | Geared | High <br> resolution | Standard |  |  |  |  |  |  |  |  |
| Basic step angles | $0.0072^{\circ}$ | $0.072^{\circ}$ | $0.36^{\circ}$ |  | $0.72^{\circ}$ |  |  |  |  |  |  |  |
| Travel per pulse at <br> base step | $0.02 \mu \mathrm{~m}$ | $0.2 \mu \mathrm{~m}$ | $1 \mu \mathrm{~m}$ | $2 \mu \mathrm{~m}$ | $4 \mu \mathrm{~m}$ | $10 \mu \mathrm{~m}$ |  |  |  |  |  |  |
| BASE RATE | 2 | 20 | 100 | 200 | 400 | 1000 |  |  |  |  |  |  |


| Stage | XYZ Linear motion stage |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rotation stage |  |  |  |  |  |  |
| Screw lead | 6 mm | 10 mm | 20 mm | 25 mm | 50 mm | - |
| Stepping <br> motor type | Standard |  |  |  |  |  |
| Basic step angles | $0.72^{\circ}$ |  |  |  |  |  |
| Travel per pulse at <br> base step | $12 \mu \mathrm{~m}$ | $20 \mu \mathrm{~m}$ | $40 \mu \mathrm{~m}$ | $50 \mu \mathrm{~m}$ | $100 \mu \mathrm{~m}$ | $0.005^{\circ}$ |
| BASE RATE | 1200 | 2000 | 4000 | 5000 | 10000 | 50 |

7 ~ 9) MOVE $1 \sim 3$ : Set the direction of movement of each axis.
[Select items] POS : Positive rotation [Command setting : 0]
NEG : Negative rotation
[Command setting : 1]

| Item | Description |
| :--- | :--- |
| POS | It moves to the motor side by the movement instruction in the positive direction, and detects the <br> limit sensor on the motor side as LS.+ |
| NEG | It moves to the anti-motor side by the movement instruction in the positive direction, and detects <br> the limit sensor on the anti-motor side as LS.+ |

$10 \sim 12$ ) ACC CONT1 ~ 3 : Set the acceleration / deceleration control for each axis.
[Select items] S CURVE :S-shaped curve
[Command setting : 0]
LINEAR : Trapezoidal
[Command setting : 1]
$13 \sim 15$ ) STAGE $1 \sim 3$ UNI T: Set the coordinate value display unit of the LCD display of each axis and the LCD display of peripheral devices (JS301, JB-401, MD-400).
[Select items] PULSE : Display drive pulse by pulse number [Command setting : 0]
NANO : Display drive pulse in nm [Command setting : 1]
MICRO : Display drive pulse in $\mu \mathrm{m}$
[Command setting : 2]
MILLI : Display drive pulse in mm
[Command setting : 3]
DEG : Display drive pulse in degrees
[Command setting : 4]
SENSOR PULSE : Display scale signal by pulse number
[Command setting : 5]
SENSOR NANO : Display scale signal in nm
[Command setting : 6]
SENSOR MICRO : Display scale signal in $\mu \mathrm{m}$
SENSOR MILLI : Display scale signal in mm
SENSOR DEG : Display scale signal in degrees
[Command setting : 7]
[Command setting : 8]
[Command setting : 9]

16 ~ 18) EMG MT EXCT1 ~ 3: Set the motor excitation state during emergency stop of each axis.
[Select items] OFF : De-excitation [Command setting : 0]
ON : Excitation
[Command setting : 1]
19) EMG BT EXCT: Sets the 24 V output state from the terminal block during an emergency stop.
[Select items] OFF : 24 V OFF
[Command setting : 0]
ON : 24 V ON Continuation
[Command setting : 1]

20 ~22) AXIS NAME1~3: Sets the axis name for the LCD display of each axis and the LCD display of the peripheral devices (JS-301, JB-401, MD400).
[Select items] 1(0), 2(1), 3(2), 4(3), 5(4), 6(5), 7(6), 8(7), 9(8), A(9), B(10), C(11), D(12), E(13), F(14), G(15), H(16), I(17), J(18), K(19), L(20), M(21), N(22), O(23), $P(24), Q(25), R(26), S(27), T(28), U(29), V(30), W(31), X(32), Y(33)$, Z(34)
[Command setting : In parentheses]

23~25) LMT FEEDBACK1~3: Set whether or not to control feedback even within the limit sensor on each axis.
[Select items] OFF : Do not execute
[Command setting : 0]
ON : Execute
[Command setting : 1]

26 ~ 28) LMT STOP SEL1 ~ 3 : Set the stop method when inputting the limit sensor on each axis.
[Select items] SD STOP : Deceleration Stop [Command setting : 0]
LM STOP : Immediate Stop
[Command setting : 1]

29 ~ 31) CD DRIVE1~3: Sets whether or not to move with HOLD current when driving each axis.
[Select items] OFF : Do not execute [Command setting : 0]
ON : Execute
[Command setting : 1]

32~ 34) CONFIG1~3: Set whether to enable or disable the auto-config function for each axis at startup.
(It is necessary to turn on the power again for the reflection.)
[Select items] OFF : Disable
[Command setting : 0]
ON : Enable
[Command setting : 1]
When the autoconfig is ON on the stage equipped with the autoconfig ROM, the Memory switch settings in Table 3-1 and 3-2 below are set according to the stage.

Table.3-1

| Item | Memory switch No. | Memory switch contents | Description |
| :---: | :---: | :---: | :---: |
| SENSOR | 1~3 | LS/LEV1 ~ 3 [\#] | Setting limit sensor input logic |
|  | 4~6 | ORGS/LEV1~3 [\#] | Setting ORG sensor input logic |
|  | 7~9 | NEARS/LEV1 ~ 3 [\#] | Setting proximity sensor input logic |
| AXIS | 1~3 | STAGE TYPE1 ~ 3 [\#] | Select stage type |
|  | 4~6 | BASE RATE1 ~ 3 [**] | Set the amount of movement per pulse in full steps |
|  | 7~9 | MOVE1 ~3 [\#] | Set travel direction |
|  | 10~12 | ACC CONT1~3 [\#] | Select acceleration and deceleration control *) NFS series only |
|  | 13~15 | STAGE1~3 UNIT [\#] | LCD display and option (JS-301, JB-401, MD-400) Select the coordinate value display unit for the LCD display. |
|  | $26 \sim 28$ | LMT STOP SEL1 ~ 3 [\#] | Set the stop method when entering the limit sensor |

[**]: This item is loaded even when auto-config is OFF, and a "**" is added in front of the setting value.
Settings cannot be changed.

Table.3-2

| Item | Memory switch No | Memory switch contents |  | Description |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MOTOR DRIVER | 1~3 | DIVIDE1 ~ 3 | [*] | Set the number of motor driver divisions |  |
|  | 4~6 | HOLD1 ~ 3 | \#] | Set hold current for motor driver |  |
|  | 7 ~ 9 | DRIVE1~3 | \#] | Set the DRIVE current of the motor driver |  |
| SPEED | $2 \sim 37$ | SPEED 1~31~4 <br> (S) (F) (R) | \#] | Set the moving speed *1,2) |  |
|  | $38 \sim 40$ | MAX SPEED1 ~ 3 | \#] | Set maximum travel speed |  |
| ORG | 1~3 | ORG1 ~ 3 SEL | \#] | Set origin return method |  |
|  | 4~6 | ORG1 ~ 3 DIR | \#] | Set return direction to origin |  |
|  | $7 \sim 9$ | ORG1~3 OFFSET |  | Set the offset movement amount when returning to the mechanical origin (MINI method) |  |
|  | 10~18 | ORG1 ~ 3 (S) (F) (R) |  | Set the return to mechanical origin speed *1,2) |  |
| FEEDBACK | 1~3 | CONT1 ~ 3 | \#] | Set up control methods |  |
|  | 4~6 | INPOS1 ~ 3 | \#] | Set in-position range | *) NFS series only |
|  | $13 \sim 15$ | FB SPEED1~3 | [\#] | Set feedback pulse speed | *) NFS series only |
|  | 19 ~ 21 | COR1 ~ 3 MODE | [\#] | Set correction mode | *) NFS series only |

*1) For scaled stages, HST series, and HST-YAW series stages of the (CS) series and (GS) series, if "MAX SPEEDx " is exceeded, a "W4 SPD SETx " warning will be issued, so set it to "MAX SPEEDx " or lower.
$\left.{ }^{*} 2\right)$ In the case of the NFS series, the full contents are set.
[*]: This item is loaded even when auto-config is OFF, and a " $*$ " is added in front of the setting value. Changing "FEEDBACK" - "CONTx" to "OPEN" will enable setting changes.
[\#]: This item is loaded only when auto-config is ON, and a "\#" is added in front of the setting value. If "\#" is marked, the setting can be changed, but the changes will be overwritten as the data is loaded when the power is turned on again. To save the changes, turn off the auto config before setting.

## 3-4-5. MOTOR DRIVER (Command: 4)

| No | Memory switch contents | Setting range / Select items | Initial value / setting | Command |
| :---: | :---: | :---: | :---: | :---: |
| 1 | DIVIDE1 | $\begin{aligned} & 1,2,3,4,5,6,8,10,12,20,25,30,40,50,60,80 \\ & 100,120,125,200,250,300,400,600,800,1000 \\ & 2000,4000,8000 \end{aligned}$ | 2 | 0 |
| 2 | DIVIDE2 | $\begin{aligned} & 1,2,3,4,5,6,8,10,12,20,25,30,40,50,60,80 \\ & 100,120,125,200,250,300,400,600,800,1000 \\ & 2000,4000,8000 \end{aligned}$ | 2 | 1 |
| 3 | DIVIDE3 | $\begin{aligned} & 1,2,3,4,5,6,8,10,12,20,25,30,40,50,60,80 \\ & 100,120,125,200,250,300,400,600,800,1000 \\ & 2000,4000,8000 \end{aligned}$ | 2 | 2 |
| 4 | HOLD1 | $\begin{aligned} & 0,5,10,15,20,25,30,35,40,45,50,60,70,80 \\ & 90,100 \end{aligned}$ | 50 | 3 |
| 5 | HOLD2 | $\begin{aligned} & 0,5,10,15,20,25,30,35,40,45,50,60,70,80 \text {, } \\ & 90,100 \end{aligned}$ | 50 | 4 |
| 6 | HOLD3 | $\begin{aligned} & 0,5,10,15,20,25,30,35,40,45,50,60,70,80 \text {, } \\ & 90,100 \end{aligned}$ | 50 | 5 |
| 7 | DRIVE1 | $\begin{aligned} & 0.3,0.325,0.35,0.5,0.55,0.6,0.65,0.7,0.75,0.8 \\ & 0.9,1,1.1,1.2,1.3,1.4 \end{aligned}$ | 0.75 | 6 |
| 8 | DRIVE2 | $\begin{aligned} & 0.3,0.325,0.35,0.5,0.55,0.6,0.65,0.7,0.75,0.8 \\ & 0.9,1,1.1,1.2,1.3,1.4 \end{aligned}$ | 0.75 | 7 |
| 9 | DRIVE3 | $\begin{aligned} & 0.3,0.325,0.35,0.5,0.55,0.6,0.65,0.7,0.75,0.8 \\ & 0.9,1,1.1,1.2,1.3,1.4 \end{aligned}$ | 0.75 | 8 |

$1 \sim 3$ ) DIVIDE $1 \sim 3$ : Sets the number of motor driver divisions for each axis.
[Select items] 1(0), 2(1), 3(2), 4(3), 5(4), 6(5), 8(6), 10(7), 12(8), 20(9), 25(10), 30(11), 40(12), 50(13), 60(14), 80(15), 100(16), 120(17), 125(18), 200(19), 250(20), 300(21), 400(22), 600(23), 800(24), 1000(25), 2000(26), 4000(27), 8000(28) [Command setting : In parentheses]

4 ~6) HOLD1 ~ 3 : Sets the HOLD current of the motor driver on each axis.
[Select items] 0(0), 5(1), 10(2), 15(3), 20(4), 25(5), 30(6), 35(7), 40(8), 45(9), 50(10), 60(11), 70(12), 80(13), 90(14), 100(15) (unit : \% of DRIVE current) [Command setting : In parentheses]

7 ~ 9) DRIVE1 ~ 3 : Sets the DRIVE current of the motor driver on each axis.
[Select items] $0.3(0), 0.325(1), 0.35(2), 0.5(3), 0.55(4), 0.6(5), 0.65(6), 0.7(7), 0.75(8)$, $0.8(9), 0.9(10), 1(11), 1.1(12), 1.2(13), 1.3(14), 1.4(15) \quad(U n i t: A / p h a s e)$
[Command setting : In parentheses]

3-4-6. SPEED (Command: 5)

| No | Memory switch <br> contents | Setting range / Select items | Initial value / <br> setting | Command |
| ---: | :--- | :--- | :--- | :--- |
| 1 | SPEED SEL | $1,2,3,4$ | 2 | 0 |
| 2 | SPEED11 (S) | Within the range of "MAX SPEED1" | 100 | 1 |
| 3 | SPEED11 (F) | Within the range of "MAX SPEED1" | 1000 | 2 |
| 4 | SPEED11 (R) | $1 \sim 1000$ | 200 | 3 |
| 5 | SPEED12 (S) | Within the range of "MAX SPEED1" | 500 | 4 |
| 6 | SPEED12 (F) | Within the range of "MAX SPEED1" | 5000 | 5 |
| 7 | SPEED12 (R) | $1 \sim 1000$ | 200 | 6 |
| 8 | SPEED13 (S) | Within the range of "MAX SPEED1" | 750 | 7 |
| 9 | SPEED13 (F) | Within the range of "MAX SPEED1" | 7500 | 8 |
| 10 | SPEED13 (R) | $1 \sim 1000$ | 200 | 9 |
| 11 | SPEED14 (S) | Within the range of "MAX SPEED1" | 1000 | 10 |
| 12 | SPEED14 (F) | Within the range of "MAX SPEED1" | 10000 | 11 |
| 13 | SPEED14 (R) | $1 \sim 1000$ | 200 | 12 |
| 14 | SPEED21 (S) | Within the range of "MAX SPEED2" | 100 | 13 |
| 15 | SPEED21 (F) | Within the range of "MAX SPEED2" | 1000 | 14 |
| 16 | SPEED21 (R) | $1 \sim 1000$ | 200 | 15 |
| 17 | SPEED22 (S) | Within the range of "MAX SPEED2" | 500 | 16 |
| 18 | SPEED22 (F) | Within the range of "MAX SPEED2" | 5000 | 17 |
| 19 | SPEED22 (R) | $1 \sim 1000$ | 200 | 18 |
| 20 | SPEED23 (S) | Within the range of "MAX SPEED2" | 750 | 19 |
|  |  |  |  |  |


| No | Memory switch <br> contents | Setting range / Select items | Initial value / <br> setting | Command |
| :--- | :--- | :--- | :--- | :--- |
| 21 | SPEED23 (F) | Within the range of "MAX SPEED2" | 7500 | 20 |
| 22 | SPEED23 (R) | $1 \sim 1000$ | 200 | 21 |
| 23 | SPEED24 (S) | Within the range of "MAX SPEED2" | 1000 | 22 |
| 24 | SPEED24 (F) | Within the range of "MAX SPEED2" | 10000 | 23 |
| 25 | SPEED24 (R) | $1 \sim 1000$ | 200 | 24 |
| 26 | SPEED31 (S) | Within the range of "MAX SPEED3" | 100 | 25 |
| 27 | SPEED31 (F) | Within the range of "MAX SPEED3" | 1000 | 26 |
| 28 | SPEED31 (R) | $1 \sim 1000$ | 200 | 27 |
| 29 | SPEED32 (S) | Within the range of "MAX SPEED3" | 500 | 28 |
| 30 | SPEED32 (F) | Within the range of "MAX SPEED3" | 5000 | 29 |
| 31 | SPEED32 (R) | $1 \sim 1000$ | 200 | 30 |
| 32 | SPEED33 (S) | Within the range of "MAX SPEED3" | 750 | 31 |
| 33 | SPEED33 (F) | Within the range of "MAX SPEED3" | 7500 | 32 |
| 34 | SPEED33 (R) | $1 \sim 1000$ | 200 | 33 |
| 35 | SPEED34 (S) | Within the range of "MAX SPEED3" | 1000 | 34 |
| 36 | SPEED34 (F) | Within the range of "MAX SPEED3" | 10000 | 35 |
| 37 | SPEED34 (R) | $1 \sim 1000$ | 200 | 36 |
| 38 | MAX SPEED1 | See detailed description | 100000 | 37 |
| 39 | MAX SPEED2 | See detailed description | 100000 | 38 |
| 40 | MAX SPEED3 | See detailed description | 100000 | 39 |
|  |  |  |  |  |

1) SPEED SEL : Sets the speed at startup.
(It is necessary to turn on the power again for the reflection.)
[Select items] 1(0), 2(1), 3(2), 4(3)
[Command setting : In parentheses]

2~37) SPEED 1~3 1~4 (S)(F)(R):
Set four types of movement speed (Minimum speed S, maximum speed F, acceleration / deceleration time R) for each axis. In addition, when operating the front panel, manually operating JS-301, JB-401, JD-101, MD-400, and operating the internal program, this movement speed setting is used for movement.
[Setting range] For minimum $S$ speed and maximum $F$ speed, refer to the detailed explanation of "MAX SPEED 1 ~ 3".
$(R)$ : Acceleration / deceleration time $1 \sim 1,000 \mathrm{~ms}$
*) Set the minimum speed $\mathbf{S}$ to a value smaller than the maximum speed $F$ in the speed setting.

38 ~ 40) MAX SPEED $1 \sim 3$ : Sets the maximum movement speed for each axis.

- Example when "FEEDBACK" - "CONTx" is "CLOSE"

| Unit | Resolution | Setting range |
| :--- | :--- | :--- |
| PULSE, SENSOR PULSE | - | $1 \sim 999999999[\mathrm{pps}]$ |
| NANO, SENSOR NANO | $1[\mathrm{~nm}]$ | $1 \sim 999999999[\mathrm{~nm} / \mathrm{s}]$ |
| MICRO, SENSOR MICRO | $1[\mathrm{~nm}]$ | $0.001 \sim 999999.999[\mu \mathrm{~m} / \mathrm{s}]$ |
| MICRO, SENSOR MICRO | $1[\mu \mathrm{~m}]$ | $1 \sim 999999999[\mu \mathrm{~m} / \mathrm{s}]$ |
| MILI, SENSOR MILI | $1[\mathrm{~nm}]$ | $0.000001 \sim 999.999999[\mathrm{~mm} / \mathrm{s}]$ |
| MILI, SENSOR MILI | $1[\mu \mathrm{~m}]$ | $0.001 \sim 999999.999[\mathrm{~mm} / \mathrm{s}]$ |
| DEG, SENSOR DEG | $0.000001\left[{ }^{\circ}\right]$ | $0.000001 \sim 999.999999\left[{ }^{\circ} / \mathrm{s}\right]$ |
| DEG, SENSOR DEG | $0.001\left[{ }^{\circ}\right]$ | $0.001 \sim 999999.999\left[{ }^{\circ} / \mathrm{s}\right]$ |

- Example when "FEEDBACK" - "CONTx" is "OPEN"

| Unit | $\begin{array}{c}\text { Amount of movement } \\ \text { per pulse }\end{array}$ | $\begin{array}{c}\text { Number of driver } \\ \text { divisions }\end{array}$ | Setting range |
| :--- | :--- | :--- | :--- |$]$| PULSE | - | 4 or more | $1 \sim 1000000[\mathrm{pps}]$ |
| :--- | :--- | :--- | :--- |
| PULSE | - | 2 or less | $1 \sim 100000[\mathrm{pps}]$ |
| NANO | $1[\mathrm{~nm}]$ | 4 or more | $1 \sim 1000000[\mathrm{~nm} / \mathrm{s}]$ |
| NANO | $1[\mathrm{~nm}]$ | 2 or less | $1 \sim 100000[\mathrm{~nm} / \mathrm{s}]$ |
| MICRO | $1[\mu \mathrm{~m}]$ | 4 or more | $1 \sim 1000000[\mu \mathrm{~m} / \mathrm{s}]$ |
| MICRO | $1[\mu \mathrm{~m}]$ | 2 or less | $1 \sim 100000[\mu \mathrm{~m} / \mathrm{s}]$ |
| MICRO | $1[\mathrm{~nm}]$ | 4 or more | $0.001 \sim 1000.000[\mu \mathrm{~m} / \mathrm{s}]$ |
| MICRO | $1[\mathrm{~nm}]$ | 2 or less | $0.001 \sim 100.000[\mu \mathrm{~m} / \mathrm{s}]$ |
| MILI | $1[\mathrm{~mm}]$ | 4 or more | $1 \sim 1000000[\mathrm{~mm} / \mathrm{s}]$ |
| MILI | $1[\mathrm{~mm}]$ | 2 or less | $1 \sim 100000[\mathrm{~mm} / \mathrm{s}]$ |
| MILI | $1[\mathrm{~nm}]$ | 4 or more | $0.000001 \sim 1.000000[\mathrm{~mm} / \mathrm{s}]$ |
| MILI | $1[\mathrm{~nm}]$ | 2 or less | $0.000001 \sim 0.100000[\mathrm{~mm} / \mathrm{s}]$ |
| DEG | $1\left[{ }^{\circ}\right]$ | 4 or more | $1 \sim 1000000\left[{ }^{\circ} / \mathrm{s}\right]$ |
| DEG | $1\left[{ }^{\circ}\right]$ | 2 or less | $1 \sim 100000\left[{ }^{\circ} / \mathrm{s}\right]$ |
| DEG | $0.000001\left[{ }^{\circ}\right]$ | 4 or more | $0.000001 \sim 1.000000\left[{ }^{\circ} / \mathrm{s}\right]$ |
| DEG | $0.000001\left[{ }^{\circ}\right]$ | 2 or less | $0.000001 \sim 0.1\left[{ }^{\circ} / \mathrm{s}\right]$ |

*) The unit depends on "AXIS" - "STAGEx UNIT".

3-4-7. ORG (Command: 6)

| No | Memory switch <br> contents | Setting range / Select items | Initial value / <br> setting | Command |
| ---: | :--- | :--- | :--- | :--- |
| 1 | ORG1 SEL | MARK, MINI, MIDDLE, ORGS, <br> NORMAL, OFF | MINI | 0 |
| 2 | ORG2 SEL | MARK, MINI, MIDDLE, ORGS, <br> NORMAL, OFF | MINI | 1 |
| 3 | ORG3 SEL | MARK, MINI, MIDDLE, ORGS, <br> NORMAL, OFF | MINI | 2 |
| 4 | ORG1 DIR | PLUS, MINUS | MINUS | 3 |
| 5 | ORG2 DIR | PLUS, MINUS | MINUS | 4 |
| 6 | ORG3 DIR | PLUS, MINUS | MINUS | 5 |
| 7 | ORG1 OFFSET | $1 \sim 999999999$ | 1000 | 6 |
| 8 | ORG2 OFFSET | $1 \sim 999999999$ | 1000 | 7 |
| 9 | ORG3 OFFSET | $1 \sim 999999999$ | 500 | 8 |
| 10 | ORG1 (S) | Within the range of "MAX SPEED1" | 9 |  |
| 11 | ORG1 (F) | Within the range of "MAX SPEED1" | 5000 | 10 |
| 12 | ORG1 (R) | $1 \sim 1000$ | 200 | 11 |
| 13 | ORG2 (S) | Within the range of "MAX SPEED2" | 500 | 12 |
| 14 | ORG2 (F) | Within the range of "MAX SPEED2" | 5000 | 13 |
| 15 | ORG2 (R) | $1 \sim 1000$ | 200 | 14 |
| 16 | ORG3 (S) | Within the range of "MAX SPEED3" | 500 | 15 |
| 17 | ORG3 (F) | Within the range of "MAX SPEED3" | 5000 | 16 |
| 18 | ORG3 (R) | $1 \sim 1000$ | 200 | 17 |
|  |  |  |  | 8 |

1~3) ORG1~3 SEL : Set the return to mechanical origin method for each axis.
[Select items] MARK : MARK method
MINI : MINI method
NORMAL : Standard method
MIDDLE : LS-to-LS Intermediate Method
ORGS : ORG method
OFF : Return to mechanical origin disabled
[Command setting : 0]
[Command setting : 1]
[Command setting : 2]
[Command setting : 3]
[Command setting : 4]
[Command setting : 5]
*) After the origin return is completed, the coordinate value is reset to zero.

3-4-7-1. MARK method
ORGx DIR Direction Limit sensor


Caution 1) In case of the ORGx DIR direction limit sensor is detected and moved in the opposite direction and the NEAR ORG sensor cannot be detected (In case of no NEAR ORG sensor), it stops at the limit sensor in the opposite direction.
Caution 2) In case of the NEAR ORG sensor is detected and moved in the ORGx DIR direction, and the origin sensor cannot be detected (In case of no ORG sensor), it stops at the limit sensor in the opposite direction.

## 3-4-7-2. MINI method

ORGx OFFSET default value is 1000 .
ORGx DIR Direction Limit sensor


3-4-7-3. NORMAL method
(When Memory switch "FEEDBACK" - "CORRx MODE" is set to "TWO" or "OFF".)


Caution 1) In case of the NEAR ORG sensor cannot be detected when moving in the ORGx DIR direction (If there is no NEAR ORG sensor), it will stop at the ORGx DIR direction limit sensor.
Caution 2) In case of the NEAR ORG sensor is detected and moved in the ORGx DIR direction and the ORG sensor cannot be detected (If there is no ORG sensor), it stops at the ORGx DIR direction limit sensor.

3-4-7-4. NORMAL method
(When Memory switch "FEEDBACK" - "CORRx MODE" is set to "MULTI".)


Caution) In case of the ORG sensor cannot be detected (If there is no ORG sensor) after the opposite limit sensor in the ORGx DIR direction is detected and the NEAR ORG sensor is detected, or the NEAR ORG sensor cannot be detected (If there is no NEAR ORG sensor), it stops at the ORGx DIR direction limit sensor.

## 3-4-7-5. MIDDLE method



## 3-4-7-6. ORGS method

3-4-7-6-1. In case of stopped between the ORGx DIR direction limit sensor and the ORG sensor.
(When Memory switch "FEEDBACK" - "CORRx MODE" is set to "TWO" or "OFF".)


Caution) In case of the ORGx DIR direction limit sensor is detected, moved in the opposite direction and the ORG sensor cannot be detected (if there is no origin sensor), it stops at the limit sensor in the opposite direction to the ORGx DIR direction limit sensor.

3-4-7-6-2. In case of the ORG sensor is in front of the ORGx DIR direction limit sensor.
(When Memory switch "FEEDBACK" - "CORRx MODE" is set to "TWO" or "OFF".)

ORG sensor ORGx DIR direction limit sensor



3-4-7-6-3. When Memory switch "FEEDBACK" - "CORRx MODE" is set to "MULTI".


Caution) In case of the ORGx DIR direction limit sensor is detected, moved in the opposite direction and the ORG sensor cannot be detected (If there is no origin sensor), it stops at the limit sensor in the opposite direction to the ORGx DIR direction limit sensor.

3-4-7-7. OFF Does not perform return to mechanical origin operation.

4 ~ 6) ORG1 ~ 3 DIR : Sets the return direction of mechanical origin for each axis.
[Select items] PLUS : Limit sensor in the positive direction [Command setting : 0] MINUS : Limit sensor in the negative direction [Command setting : 1]

7 ~ 9) ORG1~3 OFFSET : Set the offset movement amount when returning to the mechanical origin of each axis (MINI method).
[Setting range] 1~999999999
$10 \sim 18)$ ORG1~3(S)(F)(R): Set the mechanical origin return speed of each axis.
(Minimum speed S, Maximum speed F, Acceleration / Deceleration time R)
[Setting range] For minimum $S$ speed and maximum $F$ speed, refer to the detailed explanation of "MAX SPEED 1 ~ 3".
$(R)$ : Acceleration / deceleration time 1 to $1,000 \mathrm{~ms}$
*) Set the minimum speed $S$ to a value smaller than the maximum speed $F$ in the speed setting.

3-4-8. FEEDBACK (Command: 7)

| No | Memory switch contents | Setting range / Select items | Initial value / setting | Command |
| :---: | :---: | :---: | :---: | :---: |
| 1 | CONT1 | CLOSE, OPEN | OPEN | 0 |
| 2 | CONT2 | CLOSE, OPEN | OPEN | 1 |
| 3 | CONT3 | CLOSE, OPEN | OPEN | 2 |
| 4 | INPOS1 | $0 \sim 99$ | 4 | 3 |
| 5 | INPOS2 | $0 \sim 99$ | 4 | 4 |
| 6 | INPOS3 | $0 \sim 99$ | 4 | 5 |
| 7 | INP DEC1 | NORMAL, SHORT | NORMAL | 6 |
| 8 | INP DEC2 | NORMAL, SHORT | NORMAL | 7 |
| 9 | INP DEC3 | NORMAL, SHORT | NORMAL | 8 |
| 10 | FBT SEL1 | NORMAL, AFTER | NORMAL | 9 |
| 11 | FBT SEL2 | NORMAL, AFTER | NORMAL | 10 |
| 12 | FBT SEL3 | NORMAL, AFTER | NORMAL | 11 |
| 13 | FB SPEED1 | NORMAL, FAST | NORMAL | 12 |
| 14 | FB SPEED2 | NORMAL, FAST | NORMAL | 13 |
| 15 | FB SPEED3 | NORMAL, FAST | NORMAL | 14 |
| 16 | ZERO CONT1 | OFF, ON | ON | 15 |
| 17 | ZERO CONT2 | OFF, ON | ON | 16 |
| 18 | ZERO CONT3 | OFF, ON | ON | 17 |
| 19 | COR1 MODE | TWO, MULTI, OFF | OFF | 18 |
| 20 | COR2 MODE | TWO, MULTI, OFF | OFF | 19 |
| 21 | COR3 MODE | TWO, MULTI, OFF | OFF | 20 |

$1 ~ 3$ ) CONT1 ~ 3 : Set the control method for each axis.
(It is necessary to turn on the power again for the reflection.)
$\begin{array}{lll}\text { [Select items] } & \text { CLOSE : Closed loop } & \text { [Command setting : 0] } \\ & \text { OPEN: Open loop } & \text { [Command setting : 1] }\end{array}$
$4 \sim 6$ ) INPOS $1 \sim 3$ : When the closed loop control method is selected, set the in-position range (Positioning completion range at the time of positioning) of each axis.
[Setting range] $0 \sim 99$
Example : For a scale resolution of $0.01 \mu \mathrm{~m}$
$0: 0 \mu \mathrm{~m} \sim+0.01 \mu \mathrm{~m}$ range
$1: 1 \times \pm 0.01= \pm 0.01 \mu \mathrm{~m}$ range
$99: 99 \times \pm 0.01= \pm 0.99 \mu \mathrm{~m}$ range

7 ~9) INP DEC1~3: Set the in-position determination time for each axis.

| [Select items] | NORMAL : Normal | [Command setting : 0] |
| :--- | :--- | :--- |
|  | SHORT : Shorten | [Command setting : 1] |

*) In the in-position judgment time, SHORT can be used for shortening the takt time, but positioning is completed even if it does not stay within the in-position range stably, so be sure to test with the actual stage when selecting.

10 ~ 12) FBT SEL $1 \sim 3$ : Set the feedback control start timing of each axis.

| [Select items] | NORMAL : Normal | [Command setting : 0] |
| :--- | :--- | :--- |
|  | AFTER : After the drive pulse is finished | [Command setting : 1] |

*) At the feedback control start timing, even with NORMAL, feedback control starts after the end of the drive pulse, but if the moving speed of the scalemounted motorized stage is less than a certain speed, it will move while feedback control. The threshold is scale resolution $\times 1 \mu \mathrm{~m} / \mathrm{sec}$ when the resolution is 10 nm or less, and $10 \mu \mathrm{~m} / \mathrm{sec}$ otherwise.

13 ~ 15) FB SPEED1 ~ 3 : Set the feedback pulse speed for each axis.

| [Select items] | NORMAL : Normal | [Command setting : 0] |
| :--- | :--- | :--- |
|  | FAST : Fast | [Command setting : 1] |

${ }^{*}$ ) At the feedback pulse rate, FAST can be used for takt time shortening applications when the load of the motorized stage with scale is light, but even if the load is light, hunting may occur due to uneven load and high workpiece height, etc. Therefore, please be sure to test the selection of FAST on the actual stage. Please note that there are models with FAST as standard setting in the motorized stage with scale.

16 ~ 18) ZERO CONT1 ~ 3 : Set whether to enable the zero control function for each axis.
[Select items] OFF : Disable [Command setting: 0]
ON : Enable
[Command setting : 1]
*) In the ZERO CONTROL function, when ON, feedback control is performed except for the target coordinate value. When OFF, feedback control is not performed within the in-position range.

19 ~ 21) COR1 ~ 3 MODE : Set the correction mode for each axis.
[Select items] OFF: Disable
TWO : 2-point correction
MULT : Multipoint Correction
*) MULTI can be selected when a stage equipped with multi-point correction data is connected.

3-4-9. SOFT LIMIT (Command: 8)

| No | Memory switch <br> contents | Setting range / Select items | Initial value / <br> setting | Command |
| ---: | :--- | :--- | :--- | :--- |
| 1 | SOFTLMT SEL1 | OFF, ON | OFF | 0 |
| 2 | SOFTLMT SEL2 | OFF, ON | OFF | 1 |
| 3 | SOFTLMT SEL3 | OFF, ON | OFF | 2 |
| 4 | +SOFTLMT POS1 | See detailed description | 9999999 | 3 |
| 5 | +SOFTLMT POS2 | See detailed description | 9999999 | 4 |
| 6 | +SOFTLMT POS3 | See detailed description | 9999999 | 5 |
| 7 | -SOFTLMT POS1 | See detailed description | 9999999 | 6 |
| 8 | -SOFTLMT POS2 | See detailed description | 9999999 | 7 |
| 9 | -SOFTLMT POS3 | See detailed description | 9999999 | 8 |

1 ~ 3) SOFTLMT SEL 1 ~ 3 : Set whether to enable the soft limit function for each axis.
[Select items] OFF: Disable [Command setting:0]
ON : Enable
[Command setting : 1]
$4 \sim 6$ ) + SOFTLMT POS : Sets the positive side position of the soft limit.

7 ~9) - SOFTLMT POS : Sets the negative side position of the soft limit.

Example of soft limit setting range

| Unit | Resolution ${ }^{*}$ | Setting range |
| :--- | :--- | :--- |
| PULSE, SENSOR PULSE | - | $1 \sim 999999999[p u l s e]$ |
| NANO, SENSOR NANO | $1[\mathrm{~nm}]$ | $1 \sim 999999999[\mathrm{~nm}]$ |
| MICRO, SENSOR MICRO | $1[\mathrm{~nm}]$ | $0.001 \sim 999999.999[\mu \mathrm{~m}]$ |
| MICRO, SENSOR MICRO | $1[\mu \mathrm{~m}]$ | $1 \sim 999999999[\mu \mathrm{~m}]$ |
| MILI, SENSOR MILI | $1[\mathrm{~nm}]$ | $0.000001 \sim 999.999999[\mathrm{~mm}]$ |
| MILI, SENSOR MILI | $1[\mu \mathrm{~m}]$ | $0.001 \sim 999999.999[\mathrm{~mm}]$ |
| DEG, SENSOR DEG | $0.000001\left[{ }^{\circ}\right]$ | $0.000001 \sim 999.999999\left[{ }^{\circ}\right]$ |
| DEG, SENSOR DEG | $0.001\left[{ }^{\circ}\right]$ | $0.001 \sim 999999.999\left[{ }^{\circ}\right]$ |

*) When "FEEDBACK" - "CONTx" is "CLOSE", it is the scale resolution.
When "FEEDBACK" - " CONTx" is "OPEN", it is the amount of movement per pulse.

## Chapter 4: Operations

The SHRC-203 has six operating modes. The motorized stage can be operated (Controlled) for various purposes in each mode. To change the operation mode, press the [MODE] button to switch from HOST $\rightarrow$ MANUAL $\rightarrow$ REMOTE $\rightarrow$ TEACHING $\rightarrow$ EDIT $\rightarrow$ TEST $\rightarrow$ HOST.
An overview of each operating mode is as follows.

HOST mode : It can be controlled by sending and receiving commands from a personal computer.
MANUAL mode : Operation can be performed on the front panel and peripheral devices.
REMOTE mode: Program operation and stage control can be performed by switch operations on the front panel and I/O signals from external operations.
TEACHING mode : Any position data can be stored and sent to a PC.
EDIT mode : Edit the program data.
TEST mode : I/O control signal input/output operation can be checked.

## 4-1. Screen Description



Fig.4-1. Startup screen
(1) Mode: Operating

| Symbol | Mode | Symbol | Mode |
| :---: | :---: | :---: | :---: |
| $H$ | HOST | E | EDIT |
| M | MANUAL | S | TEST |
| R | REMOTE | P | Program |
| T | TEACHING | C | Memory Switch Edit |

*) At shipment, the Memory switch is set to "HOST".
The Program mode and Memory Switch Edit mode transitions from the HOST mode by command.
(2) Speed : Movement speed. (1~4)
(3) Axis Name : From the top, it is the first axis, the second axis, and the third axis. It is also possible to change the axis name with a Memory switch.
(4) Positioning State :

| Symbol | State |
| :---: | :--- |
| None | Command in operation. (BUSY) |
| $>$ | Positioning after command operation. (BUSY) |
| $:$ | Positioning is complete and staying within in-position range. <br> (READY) |
| I | After the positioning is completed, it is out of the positioning <br> completion range and feedback control is in progress. <br> (READY) |

(5) Coordinate Values : The coordinate value of each axis.
(6) Units : The coordinate value units for each axis.

It is also possible to change the unit with a Memory switch.
If error correction is enabled, the letters will be in uppercase.
(7) Communication Interface :

| Symbol | Communication Interface |
| :---: | :---: |
| U | USB |
| G | GPIB |
| E | Ethernet |

## 4-2. Indicators Description

| AXIS <br> $\bigcirc 1$ <br> $\bigcirc 2$ | AXIS | The operable axis during front panel operation lights up in green. |
| :---: | :---: | :---: |
| $\bigcirc 3$ | SLEEP | Lights up orange when in sleep state. |
| $\underset{\text { SLEEP }}{\bigcirc}$ | LOCK | Lights up red when front panel button operation is disabled. |

LOCK
$\bigcirc$

## 4-3. Move the Motorized Stage with the Front Pnel or Peripherals

In MANUAL mode, each button on the front panel and peripheral devices can be used to move the motorized stage. When all controllable axes are READY, the operated operation system (front panel, peripheral equipment) has priority. For example, if you are operating on the front panel and want to change to a peripheral device, operate the peripheral device after all controllable axes are READY.

4-1-1. Front Panel<br>[AXIS] : Selects the operating axis.<br>Hold [MODE] and press [+JOG] : Select the movement speed. ( $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ )<br>Hold [MODE] and press [-JOG] : Select the movement speed. ( $4 \rightarrow 3 \rightarrow 2 \rightarrow 1$ )<br>Click [+JOG] : Move one pulse in the positive direction.<br>Hold [+JOG] : Move continuously in the positive direction.<br>Click [-JOG] : Move one pulse in the negative direction.<br>Hold [-JOG] : Move continuously in the negative direction.<br>[MORG] : Moves the selected operation axis to the mechanical origin position.<br>[EORG] : Moves the selected operation axis to the logical origin "0" position.<br>*) Moves at the selected movement speed.<br>[ZERO] : Resets the coordinate value of the selected operation axis to " 0 ".<br>[STOP] : Immediately stops all axes of the moving motorized stage.

## 4-1-2. Peripheral Equipment <br> Refer to the operating instructions for each peripheral device.

## 4-4. Move the Motorized Stage on a personal computer.

In HOST mode, it is used by connecting to a personal computer via either GP-IB, USB or Ethernet interface.
The motorized stage can be controlled accurately by sending a command (Character string) from a personal computer to the controller.
When SHRC-203 is turned on for the first time at the time of purchase, it is in HOST mode.
For commands, refer to the separate "SHRC-203 User's Manual (Command)". In the HOST mode, the command is controlled from a PC, and therefore, no buttons other than the [MODE], [LOCK] and [STOP] buttons on the front panel and on peripheral devices can be used.

## Chapter 5: How to Use Useful Features

As a convenient operation to fully understand and use the functions of SHRC-203, the operation outline and detailed explanation page for moving the motorized stage are described below.

## 5-1. Recording Positions in Teaching Mode

In TEACHING mode, the motorized stage is moved to an arbitrary position and the coordinate values are recorded.
5-1-1. Recording Selections and Operating Motorized Stages $\quad \Rightarrow P 43$
5-1-2. Example of Program Editing Operation $\quad \Rightarrow P 44$

## 5-2. Editing Programs in Edit Mode

In EDIT mode, edit and set the operation pattern, 1 to 3 axis coordinate values, output instructions, speed settings, and standby time.
5-2-1. Selection Registration and Data Eentry Operations $\quad \Rightarrow P 47$
5-2-2. Example of Program Editing Operation $\quad \Rightarrow P 48$
5-2-3. Program Example $\quad \Rightarrow$ P57
5-2-4. Program Editing by Personal Computer $\quad \Rightarrow P 63$

## 5-3. Move Motorized Stage according to Program

In REMOTE mode, motorized stages such as program selection, start, pause, single-line execution, and stop created in TEACHING mode and EDIT mode can be controlled by front panel buttons or rear panel I/O connector control signals. In addition, the same control can be done by command instruction from a personal computer.
5-3-1. Start Program Operation from Front Panel Operation $\quad \Rightarrow$ P64
5-3-2. Start Program Operation from I/O Signals $\quad \Rightarrow$ P65
5-3-3. Start Program Operation from the PC $\quad \Rightarrow$ P66
5-3-4. Display of Execution Stop Factors $\quad \Rightarrow P 67$

## 5-4. Testing I/O Signal Connections

In TEST mode, the connection status and wiring can be checked for control signals from the I/O connectors on the rear panel.
$5-4-1$. Operation on the Front Panel $\quad \Rightarrow P 68$
5-4-2. Example Operation with an Input Signal Monitor $\quad \Rightarrow$ P68
5-4-3. Example Operation with an Output Signal Test $\quad \Rightarrow P 70$

5-5. Output the Trigger Signal to an External Device $\quad \Rightarrow P 71$
5-6. Check Controller Information and Communication Settings $\quad \Rightarrow$ P76
5-7. Other Features $\quad \Rightarrow$ P77

## 5-1. Recording Positions in Teaching Mode

In TEACHING mode, the motorized stage can be moved to any position by button operation on the front panel, and the position data can be written to the internal program or sent to the personal computer.

## 5-1-1. Recording Selections and Operating Motorized Stages

1) Record Buttons
[+JOG] : (1) Change the program number. $(7 \rightarrow 8 \rightarrow 1 \rightarrow 2)$
(2) Register the program and exit.
(Return to the TEACHING Mode Top screen)
[-JOG] : (1) Change the program number. $(2 \rightarrow 1 \rightarrow 8 \rightarrow 7)$
(2) Discard the program and exit.
(Return to the TEACHING Mode Top screen)
[MORG] : Select operation pattern "M" and change to the TEACHING registration screen to acquire position data.
[EORG] : Select operation pattern "A" and change to the TEACHING registration screen to acquire position data.
[LOCK] : (1) Cancel program number selection and return to the top screen of the TEACHING mode.
(2) Cancel the end and resume from the line next to the registered line.
(3) Register the relative position data and output the pulse from the trigger output terminal of the terminal block on the rear panel. Also, if the setting of the Memory switch "POSOUT" allows the transmission of position data, the current coordinates will be transmitted to the PC.
Hold [MODE] and press [AXIS] :
Finish the registration operation and change to the Setting Completion Confirmation screen.

Hold [MODE] and press [LOCK] : Delete the registered coordinate value.
(Set the operation pattern to "NONE".)
Hold [MODE] and press [MORG] : Select a line number. ( $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \ldots$ )
Hold [MODE] and press [EORG] : Select a line number. ( $\ldots \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$ )
Hold [MODE] and press [ZERO] :
Displays the coordinate position data registered for the current line number.
2) Motorized Stage Operation Buttons
[AXIS]: Selects the operating axis.
Hold [MODE] and press [+JOG] : Select the movement speed. ( $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ )
Hold [MODE] and press [-JOG] : Select the movement speed. ( $4 \rightarrow 3 \rightarrow 2 \rightarrow 1$ )
Click [+JOG] : Move one pulse in the positive direction.
Hold [+JOG] : Move continuously in the positive direction.
Click [-JOG] : Move one pulse in the negative direction.
Hold [-JOG] : Move continuously in the negative direction.
[MORG] : Moves the selected operation axis to the mechanical origin position.
[EORG] : Moves the selected operation axis to the logical origin "0" position.
${ }^{*}$ ) Moves at the selected movement speed.
[ZERO] : Resets the coordinate value of the selected operation axis to "0".
[STOP] : Immediately stops all axes of the moving motorized stage.

## 5-1-2. Example of Program Editing Operation

While operating the motorized stage, the position data is registered.
(1) On the top screen of the TEACHING mode, hold down the [MODE] button and press the [AXIS] button. The display changes to the Program Number Selection screen.
(2) Select the program number with the [+JOG]

| T1: | $0 p$ |
| :--- | :--- |
| $22:$ | $0 p$ |
| U3: | $0 p$ |

Fig. 5-1. TEACHING Mode Top screen and [-JOG] buttons.
[+JOG] No. $7 \rightarrow 8 \rightarrow 1 \rightarrow 2$
[-JOG] $\quad$ No. $2 \rightarrow 1 \rightarrow 8 \rightarrow 7$
In this section, position data is registered in program number 1.
Select the operation pattern with the [MORG] button or the [EORG] button, and set the coordinate values to be registered.


Fig. 5-2. Program Number Selection screen

M : Relative coordinate values are registered.
A : Absolute coordinate values are registered.
*) For the operation pattern, refer to "5-2. Editing Programs in Edit Mode ". In this example, register with relative coordinate values (Operation pattern " $\mathrm{M} "$ "). When "PROG No. 1" is displayed, pressing the [MORG] $(\rightarrow)$ button changes to the TEACHING registration screen and enables motorized stage operation.
(3) Move the motorized stage to the desired position by operating the buttons on the front panel. To register the position of each axis of the motorized stage, press the [LOCK] (RECORD) button. The line number and operation pattern before pressing the [LOCK]


Fig. 5-3. Registration screen (RECORD) button are the current registration details, and when the button is pressed, the operation pattern set in (2) and coordinate values are registered.
The position data is registered, and while the [LOCK] button is pressed, the registered line number and the position coordinates of each axis are displayed as shown in Fig. 5-4. At this time, the following processing is done at the same time.

- The coordinate values of 1 to 3 axes are registered in program number 1.
- Transmit coordinate values of 1 to

3 axes to a PC.
(Example transmission format) 1234, 100, -100
*) If the Memory switch "POSOUT" setting allows position data transmission, the coordinate values are sent to a PC.
POSOUT OFF : Transmission disabled
POSOUT ON : Transmission enabled

Pulse output from the trigger output terminal

P1 L0003 [M]
Fig. 5-4. Entering Position Data

| T1: |  | 1000 p |
| :---: | :---: | :---: |
| 22 : |  | 900 p |
| U3: |  | -900p |
| P 1 | L 0002 | [M] |
| $\checkmark$ |  |  |
| T1: |  | -500p |
| 22 : |  | 350 p |
| U3: |  | -350p |
| P 1 | L0003 | [M] | on the terminal block located on the rear panel. Repeat the above operation to register an arbitrary number of coordinate values.

(4) To delete the registered contents, select the line number by pressing the [MORG] button or [EORG] button while pressing the [MODE] button on the TEACHING registration screen, and then press the [LOCK] button while pressing the [MODE] button. The registered coordinate values are deleted and the operation pattern is registered with "NONE".
*) For the operation pattern, refer to "5-2. Editing Programs in Edit Mode ".
(5) After completing the registration process, hold down the [MODE] button and press the [AXIS] button to change to the Setting Completion Confirmation screen.
To add position data again, press the [LOCK] button.

To discard the position data, press the [-JOG]

```
SAVE EXIT
NO SAVE EXIT:( \(\downarrow\) )
```

RETURN:
Fig. 5-5. Setting Completion

Confirmation screen
(6) Press [+JOG] ( $\uparrow$ ) button to register position data and return to the TEACHING Mode Top screen.
*) In TEACHING mode, only the coordinate values and operation patterns "M", "A", "NONE" and "END" are stored for each line number of the program. Other operation patterns and information data (output instructions, set speed, waiting time, etc.) should be edited in EDIT mode.
In addition, "END" is automatically added to the next line of the last line where the coordinate position data is registered.
*) The data after the next line of "END" will be deleted.

Example of position coordinates registered in program number 1
(Display screen in EDIT mode)

| P1 L0001 [M] |  |
| :---: | :---: |
| > A | : 1234 p |
| A | 2: 100 p |
| A 3:-1000p |  |
| GO: 0 |  |
| SP : 1 |  |
| WT : 0 |  |
| TM: PULSE |  |
| TA: 1 |  |
| TV:2 |  |

P1 LOOO2 [M]
$>A 1: 1000 p$
A2: $900 p$
A3: $-900 p$
GO: 0
SP: 1
WT: 0
TM: PULSE
TA: 1
TV:2


## 5-2. Editing Programs in Edit Mode

Program data registered in the controller can be edited in the EDIT mode.
There are eight types (4,000 lines each) of programs (No. 1 to 8).

## 5-2-1. Selection Registration and Data Eentry Operations

The editing operation of the program is performed by each button on the front panel.

1) Selective Registration
[+JOG] (1) Change the program number. ( $7 \rightarrow 8 \rightarrow 1 \rightarrow 2$ )
(2) Register the edited contents and exit.
(Return to the EDIT Mode Top screen.)
(3) Initialize the program and exit.
(Return to the EDIT Mode Top screen.)
[-JOG] (1) Change the program number. $(2 \rightarrow 1 \rightarrow 8 \rightarrow 7)$
(2) Discard the edited contents and exit.
(Return to the EDIT Mode Top screen.)
[MORG] (1) Change to the Program Edit screen for editing.
(2) Change the operation pattern. (END $\rightarrow \mathrm{M} \rightarrow \mathrm{A} \rightarrow \mathrm{CM}$ )
(3) Move the cursor to the right.
(4) Change to the initialization screen.
[EORG] (1) Change the operation pattern. (CM $\rightarrow \mathrm{A} \rightarrow \mathrm{M} \rightarrow \mathrm{END}$ )
(2) Move the cursor to the left.
[LOCK] (1) Return to the EDIT Mode Top screen.
(2) Return to the Program Edit screen.
(3) Return to the Editing Completion Confirmation screen.

Hold [MODE] and press [MORG] Insert one line in the current line.
Hold [MODE] and press [EORG] Deletes the current line and closes the line.
Hold [MODE] and press [AXIS] Finish the editing process and change to the Editing Completion Confirmation screen.
2) Data Entry
[+JOG] Increases the line number. Press and hold to increase continuously.
[-JOG] Decrements the line number. Press and hold to decrease continuously.
[MORG] Move the cursor to the right digit.
[EORG] Moves the cursor to the left digit.
[AXIS] (1) Scroll down the screen.
(2) Change the setting. For numerical values, increase the value.
[ZERO] (1) Scroll up the screen.
(2) Change the setting. For numerical values, decrease the value.
[LOCK] Move the cursor inside the item.

5-2-2. Example of Program Editing Operation

1. On the EDIT mode top screen, hold down the [MODE] button and press the [AXIS] button. The screen changes to the program number selection screen.

| E1: | $0 p$ |
| :--- | :--- |
| $22:$ | $0 p$ |
| U3: | $0 p$ |
|  |  |

Fig. 5-6. EDIT Mode Top screen

| EDIT MODE |  |
| :--- | :--- |
| PROG NO. 1 | $(\uparrow \downarrow)$ |
| EDIT : | $(\rightarrow)$ |
| RETURN: | $(\mathrm{L})$ |

Fig. 5-7. Program Number Selection screen When "PROG No. 1" is displayed, press the [MORG] $(\rightarrow)$ button to switch to the Program Edit screen.
To return to the EDIT Mode Top screen, press the [LOCK] (L) button.
3. In the Program Edit screen, the first line is a common item, and the rest of the setting items displayed vary depending on the operation pattern.
Lines 5 and after are displayed when the screen is scrolled.
When the power is turned on for the first time at the time of purchase of SHRC-203, "END" is already registered for line number 1 of all program numbers and "NONE" for all other line numbers. When the program is initialized, "END" is registered in line 1 and "NONE" in other line numbers in the initialized program number.


Fig. 5-8. Program Edit screen
In case of operation pattern "M

## -Operation Pattern

- M : Execute relative value operation. (Positioning is performed to the specified movement amount and stops after the operation.)
- A : Execute absolute value operation. (Positioning is performed to the specified coordinates and stops after the operation.)
- CM : Executes continuous operation by relative value. The specified coordinate value is used as a passing point and moves continuously without stopping, and a trigger is output when the designated coordinate value is passed. Only one axis can be selected. (If it is continuous, the maximum is 256 lines.)
*) When using trigger output, set the setting speed to 56 kpps or less.
- CA : Executes continuous operation by absolute value. The specified coordinate value is used as a passing point and moves continuously without stopping, and a trigger is output when the designated coordinate value is passed. Only one axis can be selected. (If it is continuous, the maximum is 256 lines.)
*) When using trigger output, set the setting speed to 56 kpps or less.
*) Since "CA001" is the start position, the trigger is not output at the coordinate value registered in "CA001".
*) Be sure to register multiple lines. If only "CA001" is registered, the "W5 PxL**** PS" warning will occur during execution.
- K : Execute linear interpolation operation.

The movement distance per pulse must be the same between interpolation axes.
Otherwise, correct interpolation operation cannot be performed.


- E : Execute arc interpolation operation.

The movement distance per pulse must be the same between interpolation axes.
Otherwise, correct interpolation operation cannot be performed.


- EH : Executes a helical interpolation move.

This operation synchronizes an arc interpolation operation with a linear operation of other axes.
The movement distance per pulse must be the same between interpolation axes.
Otherwise, correct interpolation operation cannot be performed.


- PAV : Operates to the registered position.
- H: Return to origin operation
- Z : Moves to the logical origin "0" position.
- R : Resets the coordinate value to " 0 ".
- INPUT : Waits for the general-purpose input pattern of the specified I / O terminal.
- F : Loop number and number of times are specified at the start of the loop setting.
*) When " $F$ " is specified, be sure to specify "N" below.
- N : Returns to the start position "F" of the specified loop number at the end of the loop setting. When executed the specified number of times, the next line is executed.
*) When $N$ is specified, be sure to specify "F" above.
- END : Specifies the end line of execution.
- NONE : Unregistered line that does not execute anything. Skip this line.


## - Setting Items

The setting items displayed according to the operation pattern are as follows.
*) There are no setting items for the operation patterns "END" and "NONE".

| Setting items | Operation pattern |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | M | A | CM | CA | K | E | EH | PAV | H | Z | R | INPUT | F | N |
| A1 | $\checkmark$ |  |  |  |
| A2 | $\checkmark$ |  |  |  |
| A3 | $\checkmark$ |  |  |  |
| MD |  |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  |  |  |  |  |  |
| C1 |  |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  |  |  |  |  |  |
| C2 |  |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  |  |  |  |  |  |
| AL |  |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  |  |  |  |  |  |
| P1 |  |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  |  |  |  |  |  |
| P2 |  |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  |  |  |  |  |  |
| E1 |  |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  |  |  |  |  |  |
| E2 |  |  |  |  |  | $\checkmark$ | $\checkmark$ |  |  |  |  |  |  |  |
| HL |  |  |  |  |  |  | $\checkmark$ |  |  |  |  |  |  |  |
| RT |  |  |  |  |  |  | $\checkmark$ |  |  |  |  |  |  |  |
| PT |  |  |  |  |  |  |  | $\checkmark$ |  |  |  |  |  |  |
| GI |  |  |  |  |  |  |  |  |  |  |  | $\checkmark$ |  |  |
| LL |  |  |  |  |  |  |  |  |  |  |  |  | $\checkmark$ | $\checkmark$ |
| LV |  |  |  |  |  |  |  |  |  |  |  |  | $\checkmark$ |  |
| GO | $\checkmark$ |  |  |  |  |
| SP | $\checkmark$ |  | $\checkmark$ |  |  |  |  |
| WT | $\checkmark$ |  |  |  |  |
| TM | $\checkmark$ |  |  |  |  |
| TA | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  |  |  |  |
| TV | $\checkmark$ | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |  |  |  |  |

- A1 : Set the valid / invalid of the 1st axis and the coordinate value (Initial value : 0). (" : " : Valid, "N" : Invalid (Initial setting))
- A2 : Set the valid / invalid of the 2nd axis and the coordinate value (Initial value : 0). (" : " : Valid, "N" : Invalid (Initial setting))
- A3 : Set the valid / invalid of the 3rd axis and the coordinate value (Initial value : 0). (" : " : Valid, "N" : Invalid (Initial setting))
*) When the operation pattern "E" (Arc interpolation) is set, enable only 2 axes.
*) When the operation pattern "K" (Straight line interpolation) is set, enable 2 or 3 axes.
*) When the operation pattern "EH" (Helical interpolation) is set, only two axes of the arc interpolation axis should be valid. The invalid axis is the linear interpolation axis for helical interpolation operation.
*) In the case of operation patterns "E" and "EH", coordinate values cannot be input.
*) In the case of interpolation operation, the axis with the smaller axis number is the main axis (X axis), but in the case of helical interpolation, the axis with the smaller axis number of the arc interpolation axis is the main axis (X axis).
*) The coordinate value unit depends on the setting of the Memory switch "AXIS"-"STAGEx UNIT", so set the coordinate value according to the setting unit.
- MD : Set the specification method and rotation direction in arc interpolation.
- Specify the center point
(In the case of arc interpolation, rotate once and stop at the start coordinate value.)
CIR CW : CW direction (Initial setting)
CIR CCW : CCW direction
- Specify the rotation angle

ANGLE CW: CW direction
ANGLE CCW : CCW direction
*) An error occurs because the end point coordinates are calculated. Please use it after confirming it with the actual stage.

- Specify the passing point

PASS CW : CW direction
PASS CCW : CCW direction
*) An error will occur because the center coordinates are calculated. Please use it after confirming it with the actual stage.

- C1 : Set the center point (Relative position from the start coordinate value) in the arc interpolation of the axis with the smaller axis number (Main axis: X axis) on the two axes selected in A1 to 3 .
(When CIR, ANGLE CW or CIR, ANGLE CCW is selected in MD) (Initial value: 0)
- C2 : Set the center point (Relative position from the start coordinate value) in the arc interpolation of the axis with the larger axis number (Slave axis: Y axis) on the two axes selected in A1 to 3 .
(When CIR, ANGLE CW or CIR, ANGLE CCW is selected in MD)
(Initial value : 0 )

- AL : Set the rotation angle for arc interpolation.
(Operation pattern E : $0 \sim 360\left[{ }^{\circ}\right]$, Operation pattern EH: $0 \sim 360000\left[{ }^{\circ}\right]$ )


In the case of arc interpolation with MD setting ANGLE CW and AL set to 90 [ ${ }^{\circ}$ ]


In the case of helical interpolation with MD setting ANGLE CW and AL set to 720 [ ${ }^{\circ}$ ]

- P1 : Set the passing point (Relative position from the starting coordinate value) in the arc interpolation of the axis with the smaller axis number (main axis: X axis) on the two axes selected in A1 to 3 .
(When PASS CW or PASS CCW is selected in MD) (Initial value : 0 )
- P2 : Set the passing point (Relative position from the start coordinate value) in the arc interpolation of the axis with the larger axis number (Slave axis: Y axis) on the two axes selected in A1 to 3.
(When PASS CW or PASS CCW is selected in MD) (Initial value : 0)
- E1 : Set the end point (Relative position from the start coordinate value) in the arc interpolation of the axis with the smaller axis number (Main axis: X axis) on the two axes selected in A1 to 3.
(When PASS CW or PASS CCW is selected in MD) (Initial value : 0)
- E2 : Set the end point (Relative position from the start coordinate value) in the arc interpolation of the axis with the larger axis number (Slave axis: Y axis) on the two axes selected in A1 to 3 .
(When PASS CW or PASS CCW is selected in MD) (Initial value : 0 )

- HL : Set the end point (Relative position from the start coordinate value) of the linear motion axis during helical interpolation.
If the passing point specification and rotation angle specification are less than $360^{\circ}$, set the amount of movement at the end position of arc interpolation.
When specifying the number of rotations when specifying a center point, and when specifying a rotation angle of $360^{\circ}$ or more, set the amount of movement per rotation from the start coordinate value.
For example, if the rotation angle setting is $540^{\circ}$ (One and a half rotations) and this setting value is 100pls, the linear movement amount will be 150pls.
An error will occur because the amount of linear movement when a rotation angle of $360^{\circ}$ or more is specified is calculated.
Please use it after confirming it with the actual stage.


In case of the MD setting is CIR CW and the end point coordinates are on the upper side

- RT : Set the number of rotations when the center point is specified in helical interpolation.

1~1000 (Initial value : 1)


- PT : Set the number of the position registered by the "PAV:" command to move the stage. (1 to 20) (Initial value : 1)
- GI : Set the input waiting pattern for the I/O input terminals (IN1~6). (0~63) (Initial value : 0)
Example: 2 (Binary code)

| IN6 | IN5 | IN4 | IN3 | IN2 | IN1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | ON |  |

Blanks are OFF

- LL : Set the loop hierarchy. (1~9) (Initial value : 1)
- LV : Set the number of loops. (1~65535) (Initial value : 1)
- GO : Select the output of the I / O output terminals (OUT1~6).
( $0 \sim 63$ ) (Initial value : 0)
Example: 2 (Binary code)

| OUT 6 | OUT 5 | OUT 4 | OUT 3 | OUT 2 | OUT 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | ON |  |

Blanks are OFF

- SP : Set the operating speed. (1~4) (Initial value : 1 )

The movement speed (composite speed) in the case of interpolation operation moves at the minimum speed $S$ of the main axis.

- WT : Set the waiting time. ( $0 \sim 2560$ [ 0.1 second unit]) (Initial value : 0 )
- TM : Set the trigger output target. (Initial value : PULSE)

PULSE : Command pulse
SCALE PLUS : Positive direction scale pulse
SCALE MINUS : Negative Direction scale pulse
TIMER : Time
SCALE : Scale pulse (Operation pattern CM, CA only)
ONE SHOT : One-shot trigger (After positioning of all valid axes)
STOP : Trigger issuance prohibited
TAKE OVER : Inherit the trigger condition of the previous line
*) When selecting PULSE, SCALE PLUS, SCALE MINUS, or SCALE, set the setting speed to 56 kpps or less.

- TA: Set the target axis when PULSE, SCALE PULS, SCALE MINUS, or TIMER is set in TM.
(1~3) (Initial value : 1)
*) If TM is TIMER set to " 1 ".
- TV: Set the trigger output interval. (Initial value : 2 )

PULSE : 2 ~ 30000pls
TIMER : $1 \sim 10000$ [ 0.01 second unit]
SCALE PLUS, SCALE MINUS : $\pm 2 \sim 30000$ pls
*) Not displayed when TM is set to SCALE, ONE SHOT, STOP, or TAKE OVER.
4. First, select the operation pattern with the [MORG] $(\rightarrow)$ and $[E O R G](\leftarrow)$ buttons.
Use the [ZERO] (UP) or [AXIS] (DOWN) button to move the cursor (>) to the item to be edited, and the [LOCK] button to move the cursor ( _ ) inside the item. For numeric items, use the $[\mathrm{MORG}](\rightarrow)$ or $[E O R G](\leftarrow)$ buttons to move the digit, and use the [ZERO](UP) and [AXIS] (DOWN) buttons to edit or select. When editing is complete, press the [LOCK] button to return the cursor (>) to the item.
To delete the contents of a line number,

| P 1 L 0001 | [M] |
| :---: | :---: |
| $>\mathrm{A} 1 \mathrm{~N}$ |  |
| A 2 N |  |
| A 3 N |  |
| GO: |  |
| S P : |  |
| WT : |  |
| TM : |  |
| TA: |  |
| TV: |  |

Fig. 5-9. Program Edit screen set the operation pattern to "NONE".
5. After finishing the editing process, press the [AXIS] button while hold down the [MODE] button to change to the Editing Completion Confirmation screen.

Click the [+JOG] button to register the edited data and return to the EDIT mode top screen. To discard the edited data, click the [-JOG] button. EDIT mode Returns to the top screen. To edit the data again, press the [LOCK] button.

```
P1 SAVE EXIT:(\uparrow)
NO SAVE EXIT:(\downarrow)
I N I T I AL: ( }
RETURN:
(L)
```

Fig. 5-10. Editing Completion
Confirmation screen
6. Press the [MORG] button to change to the initialization screen to initialize the selected program contents.
Press the [+ JOG] button to initialize and return to the EDIT mode top screen.
To return to the edit completion confirmation screen, press the [LOCK] button.

## P1 INITIALIZE? INITIALEXIT: ( $\uparrow$ )

RETURN:
(L)

Fig. 5-11. Initialization screen

## 5-2-3. Program Examples

A simple program example is shown below.
(1) Program Example 1 (Positioning Operation)


1. Move to point $A$ at speed 3 . Trigger output after stop.
2. Linear interpolation movement to point $B$ at a moving speed of speed 4 (Minimum speed $S$ at the Memory switch on the main axis). After stopping, OUT = 1 output and trigger output, and wait for 2 seconds.
3. Moves 500 pulses on the 1 st axis at a speed of 4 . Trigger is output after stopping and waits for 1 second. Repeat the above operation 4 times.
4. Move to point G at speed 2 . OUT $=2$ output and trigger output after stop.
5. Move at speed 4 to the end point. OUT $=0$ output and trigger output after stop.


| P1 L 0002 | [K] |
| :---: | :---: |
| > 11 : | -1000p |
| A 2 : | 500 p |
| A 3 N |  |
| GO: 01 |  |
| S P : 4 |  |
| WT: 0002 |  |
| TM: ONE | HOT |

P1 L0003 [F]
$>L L: 1$
LV:4


## P1 Lo005 [N]

$>L L: 1$

| P1 L L $0006[\mathrm{M}]$ |  |
| ---: | ---: | ---: |
| >A 1: | 0 p |
| A 2 : | 300 p |

A 3 N
GO: 02
SP:2
WT: 00000
TM:ONE SHOT

$$
\begin{array}{rr}
\text { P } 1 \text { L } 0007[\mathrm{M}] \\
>\text { A 1: } & -2000 \mathrm{p} \\
\text { A } 2: & 0 \mathrm{p}
\end{array}
$$

A 3 N
GO: 00
SP:4
WT: 00000
TM:ONE SHOT

P1 L0008 [END]
(2) Program Example 2 (Continuous Operation)


1. Move to point $A$ at speed 3 . OUT $=0$ output after stopping. (No trigger output)
2. Linear interpolation movement to point $B$ at a moving speed of speed 4 (Minimum speed $S$ at the Memory switch of the main axis). After stopping, OUT = 1 output and trigger output, and wait for 2 seconds.
3. Wait until the input condition $\mathrm{I}=1$.
4. Move to point $E$ at speed 4. Points $C$ and $D$ output a trigger when passing. The trigger target is a scale pulse. Point E outputs a trigger when the command position (Scale pulse) is reached (In-position trigger is not output).
5. Move to point F at speed 2 . OUT $=1$ output after stopping. (No trigger output)
6. Move at speed 4 to the end point. At this time, the trigger output is performed every 200 pulses (Command pulse) movement on the 1st axis. OUT $=2$ output after stopping.

| P1 L 0001 | $[\mathrm{M}]$ |
| :---: | ---: |
| $>$ A1 : | 900 p |
| A 2 : | 0 p |

A 3 N
GO: 00
SP:3
WT: 0000
TM: STOP
P1 LOOO2 [K]
P1 LOOO2 [K]
>A1: -500p
>A1: -500p
A2: 500p
A2: 500p
A 3N
A 3N
GO:01
GO:01
SP:4
SP:4
WT:0020
WT:0020
TM:ONE SHOT
TM:ONE SHOT
P1 L0003 [INPUT]
P1 L0003 [INPUT]
>G I : 1
>G I : 1
P1 LOOO4 [CMOO1]
P1 LOOO4 [CMOO1]
$>A 1$ :
$>A 1$ :
400 p
400 p
A 2 N
A 2 N
A 3 N
A 3 N
GO: 00
GO: 00
SP:4
SP:4
WT: 0000
WT: 0000
TM: SCALE
TM: SCALE

| P1 L0005 | [CMO02] |
| :---: | ---: |
| >A1 : | 500 p |
| A $2 N$ |  |
| A $3 N$ |  |


| $P 1 \quad$ L0006 | [CMO03] |
| :---: | :---: |
| $>A 1:$ | $700 p$ |
| A $2 N$ |  |
| A $3 N$ |  |

```
P1 LOOO7 [M]
>A1: 0p
    A2: 300p
    A 3 N
    GO:01
    S P:2
    WT:0000
    TM:STOP
```

```
P1 L 0008 [M]
\(>A 1: \quad-2000 p\)
    A 2 :
                                    0 p
    A 3 N
    GO: 02
    SP:4
    WT: 0000
    TM: PULSE
    TA: 1
    TV: 0 0200
```

(3) Program Example 3 (Continuous Operation by specifying Absolute Value)


1. Move to point $A$ at speed 3. (No trigger output)
2. Move to point $C$ at speed 3 . Point $B$ output a trigger when passing.

The trigger target is a scale pulse. Point $C$ outputs a trigger when the command position (Scale pulse) is reached (In-position trigger is not output). OUT = 0 output after stopping.
3. Move to point D at speed 4. (No trigger output)
4. Move to point $F$ at speed 4. Point $E$ output a trigger when passing. The trigger target is a scale pulse. Point F outputs a trigger when the command position (Scale pulse) is reached (In-position trigger is not output).

OUT = 1 output after stopping.
*) Be sure to register multiple lines. If only "CA001" is registered, the " W5 PxL**** PS " warning will occur during execution.

| P1 L0001 | [CA001] |
| :---: | ---: |
| $>$ A1: | $100 p$ |
| A2: | $0 p$ |
| A3: | $0 p$ |
| GO:00 |  |
| SP:3 |  |
| WT: 0000 |  |
| TM: SCALE |  |


| P1 LOOO2 | [CA002] |
| :---: | ---: |
| $>A 1:$ | $200 p$ |
| A2: | $0 p$ |
| A3: | $0 p$ |


| P1 L0003 | [CA003] |
| :---: | ---: |
| PA1: | $300 p$ |
| A2: | $0 p$ |
| A3: | $0 p$ |


| P1 L0004 | [CA001] |
| :--- | ---: |
| PA1: | $250 p$ |
| A2: | $0 p$ |
| A3: | $0 p$ |
| GO:01 |  |
| SP: 4 |  |
| WT:0000 |  |
| TM:SCALE |  |


| P1 LO005 | [CA002] |
| :---: | ---: |
| PA1: | $150 p$ |
| A 2: | $0 p$ |
| A 3: | $0 p$ |


| P1 LOOO6 | [CAOO3] |
| :---: | ---: |
| PA1: | $0 p$ |
| A 2: | $0 p$ |
| A 3: | $0 p$ |

(4) Program Example 4 (Helical Interpolation)


- Arc interpolation axis : 1st axis (Main axis: X axis), 2nd axis (Slave axis: Y axis)
- Linear operation axis : 3rd axis
- Arc designation, rotation direction : CW direction with center point designation
- Center point (Main axis) : 0 [pls] (1st axis)
- Center point (Slave axis) : 10000 [pls] (second axis)
- Linear movement amount (Per rotation) : 3000 [pls]
- Number of arc rotation : 2
- OUT : 1 is output from general-purpose output after stopping
- Movement speed : 1 (Minimum speed $S$ of the 1 st axis, which is the main axis)
- Waiting time after the move is completed : 0 seconds
- Trigger : Output every 10 pulses with the command pulse of the 1st axis

```
P1 LOO01 [EH]
>A1:
    A 2:
    A 3N
    MD:CIR CW
    C1: 0p
    C2: 10000p
    HL: 3000p
    RT:0002
    GO:01
    SP:1
    WT:0000
    TM:PULSE
    TA:1
    TV:00010
```

5-2-4. Program Editing by Personal Computer
When editing from a personal computer, after transitioning from HOST mode to program mode, follow the commands and order below.

| P:R | Enter the Program mode. |
| :--- | :--- |
| P:P[No.] | Set program number. (1~8) [No.] 1 to 8 |
| P:ON | Enter Program edit mode to edit the selected program number. |
| P:SET | Set the program content. |
| P:GET | Used when confirming the contents of the program. |
| P:DEL | Used when delete the contents of the program. |
| P:INIT | Used when delete all lines of the selected program number. |
| P:OFF | Saves edits and returns to Program mode. |
| P:H | Return to the HOST mode. |

For commands, refer to the separate "SHRC-203 User's Manual (Command)".

## 5-3. Move Motorized Stage according to Program

Programs edited in EDIT mode or downloaded from a computer are used to operate the motorized stage via front panel switches, commands received from the computer or signals from the rear panel I/O connectors.
There are eight programs, No. 1 to 8 . As end-of-operation signals are output when each operation is completed, programmed operation can be used for easy remote control while confirming the operating condition of each stage.
The LCD display during programmed operation shows the program number and the line currently being executed.

## 5-3-1. Start Program Operation from Front Panel Operation

Program operation can be performed on the front panel in REMOTE mode even without a PC or I/O signal connected.
[+JOG] : Change program numbers. $(7 \rightarrow 8 \rightarrow 1 \rightarrow 2)$
[-JOG] : Change program numbers. $(2 \rightarrow 1 \rightarrow 8 \rightarrow 7)$
[MORG] : Start running. When paused, single line is executed for each press.
[EORG] : Pause and release. When used at execution stop, it pauses at the first line.
[STOP] : Stops execution and returns to line number 1.

## - Example of Operation

(1) On the REMOTE mode top screen, hold down the [MODE] button and press the [AXIS] button. The screen changes to the program execution screen.

| $R 1:$ | $0 p$ |
| :--- | :--- |
| $22:$ | $0 p$ |
| U3: | $0 p$ |
|  |  |

Fig. 5-12. REMOTE Mode Top screen
(2) Select the program number with the $[+J O G](\uparrow)$ and [-JOG] ( $\downarrow$ ) buttons, and operate with the [MORG] $(\rightarrow)$, [EORG] $(\leftarrow)$ and [STOP] buttons. STA : Press [MORG] $(\rightarrow)$ button to start. (Blinks during execution)
PAUSE : Press [EORG] ( $\leftarrow$ ) button to pause.

PROG No. 1: ( $\uparrow \downarrow)$
LINE No. 0001
STA $(\rightarrow)$ PAUSE $(\leftarrow)$

Fig. 5-13. Program Execution screen
(Blinks during pause)
ONE : Press [MORG] $\rightarrow$ ) button to single line execution.
(Blinks during execution)
(3) Press the [AXIS] button while hold down the [MODE] button to return to the REMOTE mode top screen.

## 5-3-2. Start Program Operation from I/O Signals

When starting programmed operations from an external device, automatic operation according to program data can be performed by turning on the START input of the I/O connector signal on the rear panel.
During automatic operation, pause, single-line execution, and emergency stop are performed using the pause (PAUSE input on continuously), single-line execution (START input on while PAUSE input is on continuously), and stop (STOP input on) signals. There are eight programs, No. 1 to 8, which can be selecting using I/O signals.

| Program No. | I/O PRG No. |  | Program No. | I/O PRG No. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PRG1 | PRG2 |  |  | 5 |  |  |
| 1 |  |  |  | PRG1 | PRG2 | PRG3 |  |
| 2 | ON |  |  | 6 | ON |  | ON |
| 3 |  | ON |  | 7 |  | ON | ON |
| 4 | ON | ON |  | 8 | ON | ON | ON |

Blanks are OFF

Motorized stages can be operated (returned to mechanical origin, turned clockwise or counter-clockwise, have their speed settings changed, etc.) by turning I/O connector signals on or off.
End-of-operation signals, output from the I/O connectors when each operation is completed, make it possible to control stages remotely while confirming the operating condition of each stage.
For details, refer to "Chapter 6 : Connector Pin Numbers and Signals" - "6-1. I/O Signals".

5-3-3. Start Program Operation from the PC
When starting from a personal computer, after shifting from the HOST mode to the Program mode, automatic operation (positioning) can be performed according to the program data by sending a command for program operation instead of an external control signal. Available commands are shown below.

| $P: R$ | Enter the Program mode. |
| :--- | :--- |
| $P: P[$ No. $]$ | Set program number. $(1 \sim 8)$ |
| [No.] 1 to 8 |  |

P:S Start independent programmed operation.
$P: E \quad$ Stop independent programmed operation. If the stage is moving, the program stops after the movement is complete.
L:E If the stage is moving, stop it immediately and stop the program.
P:U0 Temporarily suspend independent programmed operation.
P:U1 End temporary pause of independent programmed operation.
P:O Executes line by line while the program is paused.
P:C0 Prevent transmission of "operation complete" (COMP) signal when programmed operation completed.
P:C1 Allow transmission of "operation complete" (COMP) signal when programmed operation is completed.
*) The controller will send the data string "COMP" when programmed operation is complete.
P:T0 Prevent transmission of trigger signal data (TRIG) when trigger is output
P:T1 Allow transmission of trigger signal data (TRIG) when trigger is output
*) The controller will send the data string "TRIG" when trigger signal is output.
*IDN? Get the controller information.
BEC: Releases positioning incomplete state (BUSY) and error.
?: Get the various settings.
?:L Get the program execution status.
$!: \quad$ Get the positioning status.
!:S Get the positioning status of each axis.
Q: $\quad$ Get the coordinate value and status.
Q:S Get the coordinate values and detailed status of each axis.
SRQ: Get the status.
SRQ:S Get the detailed status of each axis.
P:H Return to the HOST mode.

Unlike the REMOTE mode, operation by I/O signals is not possible in the Program mode. For commands, refer to the separate "SHRC-203 User's Manual (Command)".

## 5-3-4. Display of Execution Stop Factors

If a registered sequence of operations stops during program execution, return to the top screen in Remote or Program mode, and display the stop factor on the fourth line on the display screen.
In Program mode, the factors can also be checked using "?:L" command.

W5 PxL**** ES : An error occurs during program execution and the program stops. Action : Release the displayed error.
W5 PxL**** PS : Stopped due to incomplete line contents. Action : Check the registration details.
W5 PxL**** BS : The program stopped because it was BUSY when it tried to execute a line contents.
Action : Since there may be an intrusion of intense
electromagnetic noise, etc., re-run the program after improving the environment.
W5 PxL**** AS : The valid axis in the program is different from the controllable axis of the Memory switch.
Action : Change the controllable axis of the Memory switch "GENERAL" - "AXIS".
W5 PxL**** ME : Excitation of one or more of the valid axes in the program is OFF. Action : Turn on the excitation.
$\left.{ }^{*}\right) x$ is the program number.
**** is the line number. In the case of 0000, it means that the event occurred before the first line was executed.
To turn off this factor display, use the [STOP] button or ALMRST signal for REMOTE mode, and the [STOP] button or BEC: command for Program mode.

## 5-4. Testing I/O Signal Connections

Test mode is used to monitor input signals from the I/O connector and to test output signals from the I/O connector. Connections to external devices can be checked easily.

## 5-4-1. Operation on the Front Panel

[+JOG]: (1) Select from input signal monitoring or output signal tests
(INPUT $\rightarrow$ OUTPUT $\rightarrow$ INPUT $\rightarrow \ldots$ )
(2) Select the signals used for I/O tests
(INPUT : STOP $\rightarrow$ ALMRST $\rightarrow$ DIN1 $\rightarrow$ DIN2 $\rightarrow \ldots$ )
(OUTPUT : COMP $\rightarrow$ ALARM $\rightarrow$ DOUT1 $\rightarrow$ DOUT2 $\rightarrow \ldots$ )
[-JOG]: (1) Select from input signal monitoring or output signal tests
(INPUT $\rightarrow$ OUTPUT $\rightarrow$ INPUT $\rightarrow$...)
(2) Select the signals used for I/O tests
(INPUT : DIN2 $\rightarrow$ DIN1 $\rightarrow$ ALMRST $\rightarrow$ STOP $\rightarrow \ldots$ )
(OUTPUT : DOUT2 $\rightarrow$ DOUT1 $\rightarrow$ ALARM $\rightarrow$ COMP $\rightarrow \ldots$ )
[MORG]: (1) Change to the test screen for testing.
(2) Change the signal when the output test. ( $\mathrm{ON} \rightarrow \mathrm{OFF} \rightarrow \mathrm{ON} . .$. )
[EORG]: (1) Cancels the test and returns to the TEST Mode Top screen.
(2) Change the signal when the output test. ( $\mathrm{ON} \rightarrow \mathrm{OFF} \rightarrow \mathrm{ON} \ldots$...)
[LOCK]: (1) When monitoring the input, the screen returns to the Input / Output Selection screen when the monitor ends.
(2) At the time of output test, when the test ends, the Input / Output Selection screen returns to the OFF setting.

5-4-2. Example Operation with an Input Signal Monitor
Check the input signal on the I/O connector.

- Operation Method
(1) On the TEST mode top screen, hold down the [MODE] button and press the [AXIS] button. The screen will change to the Input / Output Selection screen.
(2) Press [+JOG] ( $\uparrow$ ) or $[-J O G](\downarrow)$ button to change the display to "INPUT". Press the [LOCK] (L) button to return to the TEST Mode Top screen. After confirmation, press the [MORG] $(\rightarrow)$ button to change to the Input Signal Monitor screen.
(3) Pressing the [+JOG] ( $\uparrow$ ) or [-JOG] ( $\downarrow$ ) button changes the name of the input signal and confirms the level (OFF / ON: HIGH / LOW) of each signal. Pressing the [LOCK] (L) button returns to the Input/Output Selection screen.
*) ON means that current flows through the diode of the photocoupler in the SHRC203. Refer to "7-2 Reference circuit".


## －Input Signal Contents

| 〈Input Signal〉 | 〈Name〉 | 〈Parameter〉 |
| :--- | :--- | :--- |
| l／O Input | DIN1 | OFF［HIGH］／ON［LOW］ |
|  | DIN2 | OFF［HIGH］／ON［LOW］ |
|  | DIN3 | OFF［HIGH］／ON［LOW］ |
|  | DIN4 | OFF［HIGH］／ON［LOW］ |
|  | DIN5 | OFF［HIGH］／ON［LOW］ |
|  | DIN6 | OFF［HIGH］／ON［LOW］ |
| 1st Axis Clockwise Rotation | AXIS1 JOG＋ | OFF［HIGH］／ON［LOW］ |
| 1st Axis Counter－Clockwise Rotation | AXIS1 JOG－ | OFF［HIGH］／ON［LOW］ |
| 2nd Axis Clockwise Rotation | AXIS2 JOG＋ | OFF［HIGH］／ON［LOW］ |
| 2nd Axis Counter－Clockwise Rotation | AXIS2 JOG－ | OFF［HIGH］／ON［LOW］ |
| 3rd Axis Clockwise Rotation | AXIS3 JOG＋ | OFF［HIGH］／ON［LOW］ |
| 3rd Axis Counter－Clockwise Rotation | AXIS3 JOG－ | OFF［HIGH］／ON［LOW］ |
| Return to the 1st Axis Origin | AXIS1 ORG | OFF［HIGH］／ON［LOW］ |
| Return to the 2nd Axis Origin | AXIS2 ORG | OFF［HIGH］／ON［LOW］ |
| Return to the 3rd Axis Origin | AXIS3 ORG | OFF［HIGH］／ON［LOW］ |
| Speed Setting 1 | SPEED1 | OFF［HIGH］／ON［LOW］ |
| Speed Setting 2 | SPEED2 | OFF［HIGH］／ON［LOW］ |
| Program No．Selection | PRG1 | OFF［HIGH］／ON［LOW］ |
|  | PRG2 | OFF［HIGH］／ON［LOW］ |
| Program operation start | PRG3 | OFF［HIGH］／ON［LOW］ |
| Pause | START | OFF［HIGH］／ON［LOW］ |
| Stop | PAUSE | OFF［HIGH］／ON［LOW］ |
| Alarm Reset | STOP | OFF［HIGH］／ON［LOW］ |
|  | ALMRST | OFF［HIGH］／ON［LOW］ |


| S1： | $0 p$ | TEST MODE |  | TEST MODE | INPUT |
| :---: | :---: | :--- | :--- | :--- | :--- |
| $22:$ | $0 p$ | INPUT： | $(\uparrow \downarrow)$ | DIN1： | $(\uparrow \downarrow)$ |
| U3： | $0 p$ | ENTER： | $(\rightarrow)$ | OFF［HIGH］ |  |
|  |  | RETURN： | $(L)$ | RETURN： | $(L)$ |

Fig．5－14．TEST Mode
Top screen

Fig．5－15．Input／Output
Selection screen

Fig．5－16．Input Signal
Monitor screen

5－4－3．Example Operation with an Output Signal Test Check the Output Signal on the I／O Connector．
－Operation Method
（1）On the TEST mode top screen，hold down the［MODE］button and press the［AXIS］ button．The screen will change to the Input／Output Selection screen．
（2）Press the $[+\mathrm{JOG}](\uparrow)$ or $[-\mathrm{JOG}](\downarrow)$ button to change the display to＂OUTPUT＂．
Press the［LOCK］（L）button to return to the TEST Mode Top screen．
After confirmation，press the［MORG］$(\rightarrow)$ button to change to the Output Signal Test screen．
（3）Press the $[+J O G](\uparrow)$ or $[-J O G](\downarrow)$ button changes the name of the output signal． Press the $[\mathrm{MORG}](\rightarrow)$ or $[E O R G](\leftarrow)$ button to change＂ON $[H I G H]$＂／＂OFF ［LOW］＂．
In this screen，press the［LOCK］（L）button sets the setting to＂OFF［LOW］＂and returns to the Input／Output Selection screen．
＊）ON means that current flows through the transistor of the photocoupler in the SHRC－203．Refer to＂7－2 Reference circuit＂．
－Output Signal Contents

| 〈Output Signal〉 | 〈Name〉 | 〈Parameter〉 |
| :--- | :--- | :--- |
| I／O Output | DOUT1 | OFF［LOW］／ON［HIGH］ |
|  | DOUT2 | OFF［LOW］／ON［HIGH］ |
|  | DOUT3 | OFF［LOW］／ON［HIGH］ |
|  | DOUT4 | OFF［LOW］／ON［HIGH］ |
|  | DOUT5 | OFF［LOW］／ON［HIGH］ |
|  | DOUT6 | OFF［LOW］／ON［HIGH］ |
| 1st Axis Busy | AXIS1 BUSY | OFF［LOW］／ON［HIGH］ |
| 2nd Axis Busy | AXIS2 BUSY | OFF［LOW］／ON［HIGH］ |
| 3rd Axis Busy | AXIS3 BUSY | OFF［LOW］／ON［HIGH］ |
| Program Operation Complete | COMP | OFF［LOW］／ON［HIGH］ |
| Alarm | ALARM | OFF［LOW］／ON［HIGH］ |

```
TEST MODE
OUTPUT: (\uparrow\downarrow)
ENTER: ( }
RETURN:
(L)
```

Fig．5－17．Input／Output
Selection screen

| TEST MODE | OUTPUT |
| :---: | ---: |
| DOUT1： | $(\uparrow \downarrow)$ |
| OFF［LOW］ | $(\leftrightarrow \rightarrow)$ |
| RETURN： | $(L)$ |

Fig．5－18．Output Signal Test screen

## 5-5. Output the Trigger Signal to an External Device

The trigger signal is output from the trigger signal terminal block (TRIG) on the rear panel of SHRC-203 as a pulse wave signal that turns ON for a certain period of time to an external device. For the signal output circuit, see Fig. 7-3 in "Chapter 7: I/O Circuits and Connection Examples". The trigger-signal pulse width (The length of time the signal is ON) is set in the TRG WIDTH Memory switch stored in the controller (Three values (lengths) are available).
The pulse width can be selected from $10 \mu \mathrm{~s}, 100 \mu \mathrm{~s}$, or $1000 \mu \mathrm{~s}$.
Trigger signals can be output at specified positions or intervals synchronized with the positioning of a motorized stage. As a result, they can be used to give instructions to an external device during positioning.

Trigger signals can also be output at the completion of motorized stage positioning, allowing instructions to be given to external devices when the stage has reached a specified position.

The following three methods are available for trigger-signal output :
(1) Trigger signals are output once when the [LOCK] button on the front panel is pressed when positioning information is acquired in TEACHING (PROGRAM) mode.
(2) Trigger signals can be output according to control commands from the computer in HOST mode. Use the "T:" command to trigger output by command in HOST mode.

## [T command settings]

- Trigger output target axis : 1 to 3
- Time Interval Trigger interval : 1 to 10000 (Intervals of 0.01 to 100.00 seconds)
- Drive Pulse Trigger output interval : 2 to 3000 pulses
- Scale Pulse Trigger output interval : $\pm 2$ to 3000 pulses
[T command format]
- Driving Pulse Trigger

Set the target axis for driving pulse trigger output and the trigger pulse interval for during positioning.

## T: P [axis for trigger output] P [trigger pulse interval]

*) Set the movement speed for motorized stages to less than 56 kpps when using the above commands. (Trigger signals may not output at speeds of over 56kpps.)
(Example) T: P2P5: Output every 5 pulses during the positioning movement of the 2nd axis.


- Scale Pulse Trigger (Scale-mounted motorized stage only)

Set the target axis for scale pulse trigger output and the trigger pulse interval for during positioning.

## T: E [axis for trigger output] P [direction] [trigger pulse interval]

*) Set the movement speed for motorized stages to less than 56 kpps when using the above commands. (Trigger signals may not output at speeds of over 56kpps.)
(Example)T: E1P+2: Trigger output every 2 pulses when the 1 st axis stage moves in the positive direction.

Even if the stage moves back in the reverse direction due to vibration, etc., the trigger is not output in duplicate.


- Time Interval Trigger

Set the time interval for trigger output.

## T: T [Trigger output-time intervals]

(Example) T: T10: Output trigger every $100 \mathrm{msec}(10 \times 0.01$ seconds)


- Output trigger once when the command is executed.

T: M

- Disable trigger output after the command is executed.

T: S
(3) Output according to the output instruction of the program in REMOTE mode. In program output setting instructions, triggers are output during positioning or when positioning is completed.
[Output instruction settings]

- Positioning time trigger output interval : 1 to 10000
(Intervals of 0.01 to 100.00 seconds)
- Drive Pulse Trigger output interval : 2 to 3000 pulses
- Scale Pulse Trigger output interval : $\pm 2$ to 3000 pulses
[Output indication contents]
- Driving Pulse Trigger

Set the target axis for driving pulse trigger output and the trigger pulse interval for during positioning.
*) Set the movement speed of the automatic stage to 56 kpps or less.
(Trigger signals may not output at speeds of over 56 kpps .)
(Example) Output every 5 pulses during the positioning movement of the 2nd axis.

```
TM:PULSE
TA:2
TV:00005
```

Fig. 5-19. Program edit screen in EDIT mode


- Scale Pulse Trigger (Scale-mounted motorized stage only)

Set the target axis for scale pulse trigger output and the trigger pulse interval for during positioning.
*) Set the movement speed of the automatic stage to 56 kpps or less.
(Trigger signals may not output at speeds of over 56 kpps .)
(Example) Output every 2 pulses during the 1st axis stage is positioning movement in the positive direction.

Even if the stage moves back in the reverse direction due to vibration, etc., the trigger is not output in duplicate.

```
TM:SCALE PLUS
TA:1
TV:00002
```

Fig. 5-20. Program edit screen in EDIT mode


- Time Interval Trigger

Set the time interval for trigger output.
(Example) Output every 100 ms . ( $10 \times 0.01$ seconds)

> TM: TIMER
> TV: 00010

Fig. 5-21. Program edit screen in EDIT mode


- One-Shot Trigger

After the positioning of all stages is completed, the trigger is output once.
TM:ONE SHOT

Fig. 5-22. Program edit screen in EDIT mode

| Logical OR <br> of all axis stage states | Busy |
| :---: | :---: |
|  |  |
| Trigger output | Positioning <br> completed |
|  |  |

- Trigger Output Stop

TM: STOP
Fig. 5-23. Program edit screen in EDIT mode

## 5-6. Check Controller Information and Communication Settings

In all modes, information about the controller and the currently selected communication interface settings can be viewed.

## 5-6-1 Operation of Information

Information display operations are performed using the buttons on the front panel.
Hold [MODE] and press [LOCK] :
Display the information top screen.
*) When any command is sent, it will return to the mode before the transition.
[MORG] or [EORG] : Change the information content. (MODEL $\rightarrow$ IF $\rightarrow$ MODEL)
[+ JOG] Scroll up the displayed items.
[-JOG] Scroll down the display items.
[MODE] Returns to the mode before the transition.

## 5-6-2. Information Display

On the top screen of each mode, hold down the [MODE] button and press the [LOCK] button.
Change to the information top screen (MODEL information).

```
INFO [MODEL]
MDL:SHRC-203
SN: :**********
F V :**. **. ***
```

Fig. 5-24. Information top screen

## 5-6-3. Changing Information

For the currently selected interface information, select [IF] with the [MORG] or [EORG] button.

```
INFO [IF]
IF :USB
DLM:****
```

Fig. 5-25. USB

```
INFO [IF]
IF :GPIB
DLM:****
ADR:**
```

INFO [IF]
IF : ETHERNET
DLM:****
I PA: $* * * * * * * * * * * *$
DGW: $* * * * * * * * * * * *$
SNM: $* * * * * * * * * * * *$
POT: $* * * * *$
MAC: $* * * * * * * * * * * *$

Fig. 5-27. Ethernet

Fig. 5-26. GP-IB

- SN : Serial number •FV : Firmware version • DLM : Delimiter • ADR : Address
- IPA : IP address •DGW : Default gateway •SNM : Subnet mask
- POT : Port number • MAC : Mac address


## 5-7. Other Features

It is equipped with a function to prevent erroneous operation, reduction of power consumption (Sleep function), and a function to turn off all lamps necessary for use in a dark room. The button operations on the front panel are as follows.

- Prevent erroneous operation function
[LOCK] : The operation of the [+JOG], [-JOG], [MORG], [EORG], [ZERO], and [AXIS] buttons on the front panel is prohibited. At this time, the red LOCK LED lights up.

Hold [LOCK] : All buttons that were prohibited on the front panel will be made available. At this time, the red LOCK LED turns off.

- All lamps off
[MODE] while the LOCK LED is on :All lights turn off or on with each click. (MANUAL mode only)
- Sleep

Hold [AXIS] and press [ZERO] : Turn off the motor excitation, turn off the LCD back light, turn off the lamps other than the SLEEP LED, cooling fan stopped, cut off the 24 V output of the terminal block, and cut off the power supply of peripheral device.
At this time, the orange SLEEP LED lights up.
When a motorized stage with a scale is connected, the power may be kept on even when not in use to maintain coordinate values, but power consumption can be reduced at that time.
However, if "S1 SCALE" occurs during sleep, the coordinate values cannot be retained.
(MANUAL mode only)
*) The cooling fan may rotate due to the rise in internal temperature.
Buttons other than [STOP] while SLEEP LED is on : Wake up from sleep.

For operations of other functions from a personal computer, refer to the separate "SHRC-203 User's Manual (Command)".

## Chapter 6: Connector Pin Numbers and Signals

## 6-1. I/O Signals

I/O signals are enabled when the controller's operating mode is set to REMOTE mode. Motorized stages can be operated (Returned to mechanical origin, turned clockwise or counter-clockwise, have their speed settings changed, etc.) by turning I/O connector signals on or off from a remote device.
Motorized operations can be performed following the instructions in a controller-internal program using START, PAUSE, and STOP signals. Eight programs, No. 1 to 8, are available for selection. As end-of-operation signals are output when each operation is completed, programmed operation can be used for easy remote control while confirming the operating condition of each stage.
*) The pulse width of the input signal should be $\mathbf{1 0} \mathbf{~ m s}$ or more.

6-1-1. I/O Signal for Manual Operation
(1) Description of Input Signals

- ALMRST input Release the alarm. (When the signal is ON)
- AXIS1 ORG input Return 1st axis to mechanical origin. (When the signal is ON)
- AXIS2 ORG input Return 2nd axis to mechanical origin. (When the signal is ON)
- AXIS3 ORG input Return 3rd axis to mechanical origin. (When the signal is ON)
- AXIS1 JOG + input Move 1st axis in positive direction. (While the signal is ON)
- AXIS1 JOG - input Move 1st axis in negative direction. (While the signal is ON)
- AXIS2 JOG + input Move 2nd axis in positive direction. (While the signal is ON)
- AXIS2 JOG - input Move 2nd axis in negative direction. (While the signal is ON)
- AXIS3 JOG + input Move 3rd axis in positive direction. (While the signal is ON)
- AXIS3 JOG - input Move 3rd axis in negative direction. (While the signal is ON)
- SPEED 1, 2 input Speed command (Stage moves at the speed set in the speedsetting Memory switch (SPEED1 ~ 4) through combinations of SPEED1 and SPEED2 input signals)

| Selected speed | SPEED1 | SPEED2 | SPEED3 | SPEED4 |
| :---: | :---: | :---: | :---: | :---: |
| SPEED1 signal |  | ON |  | ON |
| SPEED2 signal |  |  | ON | ON |

Blanks are OFF

- IN1 ~ 6

| Input | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN1 |  | ON |
| IN2 |  |  | ON | ON |
| IN3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| IN4 |  |  |  |  |  |  |  |  | ON |
| IN5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| IN6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Blanks are OFF

| Input | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN1 |  | ON |
| IN2 |  |  | ON | ON |
| IN3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| IN4 |  |  |  |  |  |  |  |  | ON |
| IN5 | ON |
| IN6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Blanks are OFF

| Input | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN1 |  | ON |
| IN2 |  |  | ON | ON |
| IN3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| IN4 |  |  |  |  |  |  |  |  | ON |
| IN5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| IN6 | ON |

Blanks are OFF

| Input | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN1 |  | ON |
| IN2 |  |  | ON | ON |
| IN3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| IN4 |  |  |  |  |  |  |  |  | ON |
| IN5 | ON |
| IN6 | ON |

Blanks are OFF
(2) Description of Output Signals

- ALARM outpu

Alarm (ON when an alarm is generated).

- AXIS1 BUSY output 1st axis BUSY (Turns ON when the 1st axis is moving, and turns OFF when the stage stops for open-loop control or when positioning is completed for closed-loop control.)
- AXIS2 BUSY output 2nd axis BUSY (Turns ON when the 2nd axis is moving, and turns OFF when the stage stops for open-loop control or when positioning is completed for closed-loop control.)
- AXIS3 BUSY output 3rd axis BUSY (Turns ON when the 3rd axis is moving, and turns OFF when the stage stops for open-loop control or when positioning is completed for closed-loop control.)
- OUT 1 ~ 4

Output as six-bit data

| Output | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUT1 |  | ON |
| OUT2 |  |  | ON | ON |
| OUT3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| OUT4 |  |  |  |  |  |  |  |  | ON |
| OUT5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| OUT6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Blanks are OFF

| Output | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUT1 |  | ON |
| OUT2 |  |  | ON | ON |
| OUT3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| OUT4 |  |  |  |  |  |  |  |  | ON |
| OUT5 | ON |
| OUT6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Blanks are OFF

| Output | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUT1 |  | ON |
| OUT2 |  |  | ON | ON |
| OUT3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| OUT4 |  |  |  |  |  |  |  |  | ON |
| OUT5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| OUT6 | ON |

Blanks are OFF

| Output | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUT1 |  | ON |
| OUT2 |  |  | ON | ON |
| OUT3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| OUT4 |  |  |  |  |  |  |  |  | ON |
| OUT5 | ON |
| OUT6 | ON |

Blanks are OFF

## 6-1-2. I/O Signals for Automatic Operations

Motorized stage operation by the program starts when the START input of the I/O signal is turned on in the REMOTE mode top screen. During operation, the LCD display shows the program number and the line number of the program being operated, as shown in Fig 6-2. When an execution completed, a stop operation or an error occurs, the screen returns to the REMOTE Mode Top screen. For the error, refer to "5-3-4. Display of Execution Stop Factors".

| R1: | 0 p |
| :--- | :--- |
| $22:$ | 0 p |
| $\cup 3:$ | 0 p |
|  |  |

Fig. 6-1. REMOTE Mode Top screen

I/O OPERATION
PROG No. 1
LINE No. 0001
EXECUTION STATE
Fig. 6-2. Example during operation
(1) Description of Input (Start/Stop) Signals

- PRG Input Choose the program.
(Secifies the number of the program data to be executed.)

| Program No. | I/O PRG No. |  |  | Program No. | I/O PRG No. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PRG1 | PRG2 | PRG3 |  | PRG1 | PRG2 | PRG3 |
| 1 |  |  |  | 5 |  |  | ON |
| 2 | ON |  |  | 6 | ON |  | ON |
| 3 |  | ON |  | 7 |  | ON | ON |
| 4 | ON | ON |  | 8 | ON | ON | ON |

Blanks are OFF

| - START Input : | Start command for motorized operations <br> (Program execution begins when signal is on. At that time, "EXECUTION STATE" is displayed on the fourth line of the display screen.) |
| :---: | :---: |
| - PAUSE Input | Pause command <br> (Operations are paused while signal is on. At that time, "PAUSE STATE" is displayed on the fourth line of the display screen. In this state, turning the START input on executes only single line of the program. At that time, "ONE LINE STATE" is displayed on the fourth line of the display screen. When the signal is turned off, program operation is resumed.) |
| - Stop Input : | Stop command for motorized operations <br> (Programmed operations stop when signal is turned on.) <br> It can be used regardless of the mode. |
| - ALMRST Input | Release the alarm <br> (The error is release when the signal is turned on.) |

(2) Descriptions of Output Signals

- COMP Output: Program completed
(On when automatic operations are complete.)
Signal output as 100ms pulse.
- AXIS1 BUSY output 1st axis BUSY
(Turns ON when the 1st axis is moving, and turns OFF when the stage stops for open-loop control or when positioning is completed for closed-loop control.)
- AXIS2 BUSY output 2nd axis BUSY
(Turns ON when the 2nd axis is moving, and turns OFF when the stage stops for open-loop control or when positioning is completed for closed-loop control.)
- AXIS3 BUSY output 3rd axis BUSY
(Turns ON when the 3rd axis is moving, and turns OFF when the stage stops for open-loop control or when positioning is completed for closed-loop control.)
- ALARM Output : Alarm (On when an alarm is generated.)

6-1-3. I/O Connector Signals

| No. | Name | No. | Name |
| :---: | :---: | :---: | :---: |
| 1 | COM1 | 26 | AXIS3 BUSY(COM1) |
| 2 | AXIS2 BUSY(COM1) | 27 | AXIS1 BUSY(COM1) |
| 3 | COM2 | 28 | COMP(COM2) |
| 4 | ALARM(COM2) | 29 | N.C |
| 5 | COM3 | 30 | ALMRST(COM3) |
| 6 | SPEED2(COM3) | 31 | SPEED1(COM3) |
| 7 | COM4 | 32 | AXIS3 JOG - (COM4) |
| 8 | AXIS3 JOG + (COM4) | 33 | AXIS2 JOG - (COM4) |
| 9 | COM5 | 34 | AXIS2 JOG+(COM5) |
| 10 | AXIS1 JOG-(COM5) | 35 | AXIS1 JOG+(COM5) |
| 11 | COM6 | 36 | AXIS3 ORG(COM6) |
| 12 | AXIS2 ORG(COM6) | 37 | AXIS1 ORG(COM6) |
| 13 | COM7 | 38 | STOP(COM7) |
| 14 | PAUSE(COM7) | 39 | START(COM7) |
| 15 | COM8 | 40 | PRG3(COM8) |
| 16 | PRG2(COM8) | 41 | PRG1(COM8) |
| 17 | +V(DC24V) | 42 | GND (0V) |
| 18 | COM9 | 43 | OUT6(COM9) |
| 19 | OUT5(COM9) | 44 | OUT4(COM9) |
| 20 | COM10 | 45 | OUT3(COM10) |
| 21 | OUT2(COM10) | 46 | OUT1(COM10) |
| 22 | COM11 | 47 | IN6(COM11) |
| 23 | IN5(COM11) | 48 | IN4(COM11) |
| 24 | COM12 | 49 | IN3(COM12) |
| 25 | IN2(COM12) | 50 | IN1(COM12) |

Connector used : 10250-52A2PL (Manufactured by 3M products) equivalent
*) The black faces are outputs.
( ) is the corresponding COM terminal.
Terminal No. 17 "+V (DC24V)" should be used at 0.5 A or less.

## 6-2. Terminal Block

| No. (From right) | Name | No. (From right) | Name |
| :---: | :---: | :---: | :---: |
| 1 | DC24V - | 4 | TRIG H |
| 2 | DC24V + | 5 | EMG |
| 3 | TRIG L | 6 | EMG |

Parts used : ML-250-S2GYF-6P (Manufactured by SATO Parts products) Equivalent Jumper bracket ML-1000-3H1 attached to terminals 5-6.
*) The black faces are outputs.
*) Terminal No. 2 " 24 V " should be used at 1 A or less.

## 6-3. STAGE 1 ~ 3 Connector

| No. | Name | No. | Name |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Blue : Motor wiring | 9 | Autoconfig |  |
| 2 | Red : Motor wiring | 10 | Reserve |  |
| 3 | Orange : Motor wiring | 11 | LS(+) : Limit detection on + |  |
| 4 | Green : Motor wiring | 12 | LS( - ) : Limit detection on - |  |
| 5 | Blac $k:$ Motor wiring | 13 | GND : Common sensor |  |
| 6 | GND : Common sensor | 14 | NEAR : Proximity detection |  |
| 7 | ORG : Mechanical origin detection | 15 | $+24 \mathrm{~V}:$ Sensor power supply |  |
| 8 | $+24 \mathrm{~V}:$ Sensor power supply |  |  |  |

Connector used : XM3B-1522 (Manufactured by OMRON products) equivalent
*) The black faces are outputs.

## 6-4. SCALE 1 ~ 3 Connector

| No. | Name | No. | Name |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Signal GND | 9 | Alarm- |  |
| 2 | Signal GND | 10 | Phase A+ |  |
| 3 | +5 V | 11 | Phase A- |  |
| 4 | +5 V | 12 | Phase B+ |  |
| 5 | - | 13 | Phase B- |  |
| 6 | - | 14 | - |  |
| 7 | - | 15 | FG |  |
| 8 | - |  |  |  |

Connector used : D02-M15SAG-21L9E (Manufactured by JAE products) equivalent
*) The black faces are outputs.

## 6-5. USB Connector

| No. | Name | No. | Name |
| :---: | :---: | :---: | :---: |
| 1 | +5 V | 3 | DATA+ |
| 2 | DATA - | 4 | GND |

Connector used : XM7B-0442 (Manufactured by OMRON products) equivalent

## 6-6. Ethernet Connector

| No. | Name | No. | Name |
| :---: | :---: | :---: | :---: |
| 1 | TX + | 5 | - |
| 2 | TX- | 6 | RX- |
| 3 | RX + | 7 | - |
| 4 | - | 8 | - |

Connector used : J0026D01BNL (Manufactured by Pulse Electronics products) equivalent

## 6-7. GP-IB Connector

| No. | Name | No. | Name |
| :---: | :---: | :---: | :---: |
| 1 | DATA1 | 13 | DATA5 |
| 2 | DATA2 | 14 | DATA6 |
| 3 | DATA3 | 15 | DATA7 |
| 4 | DATA4 | 16 | DATA8 |
| 5 | EOI | 17 | REN |
| 6 | HND (DAV) | 18 | GND |
| 7 | HND (NRFD) | 19 | GND |
| 8 | HND (NDAC) | 20 | GND |
| 9 | IFC | 21 | GND |
| 10 | SRQ | 22 | GND |
| 11 | ATN | 23 | GND |
| 12 | SHIELD | 24 | GND |

Connector used : 57LE-20240-7700(D35G)-CA (Manufactured by DDK products) equivalent

## 6-8. OPTION Connector

| No. | Name | No. | Name |
| :---: | :---: | :---: | :---: |
| 1 | GND | 8 | GND |
| 2 | +5 V | 9 | +5 V |
| 3 | RXD + | 10 | RXD - |
| 4 | TXD + | 11 | TXD - |
| 5 | STOP | 12 | CONNECT |
| 6 | - | 13 | - |
| 7 | - | 14 | - |

Connector used : 10214-6202PL (Manufactured by 3M products) equivalent
*) The black faces are outputs.

## Chapter 7: I/O Circuits and Connection Examples

## 7-1. Input/Output Circuit



Fig. 7-1. I/O input circuit


Fig. 7-2. I/O output circuit

74LS06 Equivalent

$\stackrel{+1}{ } \mathrm{OL}$

## 7-2. Reference Circuit



Fig. 7-4. Example input circuit


Fig. 7-5. Example of input circuit when using SHRC-203 internal power source
*) When current flows through the diode of the photocoupler in the SHRC-203, it is recognized as ON.


Fig. 7-6. Example output circuit

[^1]

Fig. 7-7. Example Emergency STOP circuit


Fig. 7-8. Example trigger output circuit


Fig. 7-9. Example of trigger output circuit when using external power supply

The open collector gate(74LS06) is used for the trigger output circuit in the controller. Inthe Fig. $7-8$, the amplitude of the trigger output pulse is 24 V , because of the DC24V power supply connection.
In the Fig. 7-9, the amplitude of the trigger output pulse is 5 V , because of the +5 V power supply connection. In this case, a +5 V power supply must be prepared.
*) Since direct connection of the power supply to the H terminal of the trigger will result in failure, be sure to connect a $10 \mathrm{k} \Omega$ load resistor.

## Chapter 8: Alarm

When an abnormal condition arises, for example, the glass-scale is out of order or a cable is broken, an alarm (Out of order) appears with the description of the abnormal condition on the LCD of the SHRC-203. (See Fig. 8-1, 8-2)
*) Unconnected axes should be removed from the controllable axes of the Memory switch "GENERAL" - "AXIS".
Failure to exclude it will result in anomalous recognition.
If an alarm occurs, remove the cause of the abnormality and then cancel it by the following method.

| H1: | S1 | SCALE |
| ---: | ---: | ---: |
| $22:$ |  | $0 p$ |
| U3: |  | $0 p$ |
|  |  |  |

Fig. 8-1. Alarm display example 1

| H1: |  | $0 p$ |
| ---: | :--- | :--- |
| $22:$ |  | $0 p$ |
| U3: |  | $0 p$ |
|  | CMD ER |  |

Fig. 8-2. Alarm display example 2

| Display | S1 SCALE |  |  |
| :---: | :---: | :---: | :---: |
| Description | - Alarm from the scale is output - Scale cable not connected |  |  |
| Occurrence cases | Overspeed, interpolation error, etc. |  |  |
| Release | Top screen of all modes <br> TEACHING operation screen | HOST mode | REMOTE mode top screen |
|  | STOP button | BEC: Command | ALMRST signal ON |
|  | When unplugging and plugging in the scale cable, do so after the power is turn off. |  |  |
| Status after release | Zero reset coordinate values and positioning complete |  |  |


| Display | S2 DISCONNECT, S4 OVER FLOW |  |  |
| :---: | :---: | :---: | :---: |
| Description | The difference between the coordinate value and the command position is 5 mm or more |  |  |
| Occurrence cases | Breakage of scale signal line, step-out due to overload, etc. |  |  |
| Release | Top screen of all modes <br> TEACHING operation screen | HOST mode | REMOTE mode top screen |
|  | STOP button | BEC: Command | ALMRST signal ON |
|  | When unplugging and plugging in the scale cable, do so after the power is turn off. |  |  |
| Status after release | In case of disconnection of scale signal line, positioning is completed at the coordinate value at the point of disconnection. <br> In the case of step-out, positioning is completed at the step-out position. <br> (The coordinate values are maintained unless the power is turned off.) |  |  |


| Display | S3 HUNTING |  |  |
| :---: | :---: | :---: | :---: |
| Description | Positioning is not completed even if feedback control is applied the specified number of times. |  |  |
| Occurrence cases | Stage is subjected to vibration, or stage drive unit failure, etc. |  |  |
| Release | Top screen of all modes TEACHING operation screen | HOST mode | REMOTE mode top screen |
|  | STOP button | BEC: Command | ALMRST signal ON |
| Status after release | Positioning completed (Coordinate values are maintained) |  |  |

*) Feedback control will be disabled after "S3 HUNTING" occurs, but positioning may be completed within the in-position range and automatically released even if feedback control is not performed.

| Display | S5 LIMIT |
| :---: | :--- |
| Description | +LS, -LS both detection |
| Occurrence <br> cases | - The polarity of the limit sensor is different. • Break of limit sensor wire <br> - Motor cable not connected |
| Release | - Change the polarity of the limit sensor of the Memory switch <br> - Replace or connect the motor cable after the power is turn off. |
| Status after <br> release | Same as normal startup |


| Display | S6 COUNT OVER |  |  |
| :---: | :--- | :---: | :---: |
| Description | The LCD display limit of the coordinate value has been exceeded. |  |  |
| Mode | Top screen of all modes <br> TEACHING operation screen | HOST mode | REMOTE mode top screen |
| Release | STOP button | BEC: Command | ALMRST signal ON |
| Status after <br> release | Zero reset coordinate values and positioning complete |  |  |


| Display | S7 CONFIG |
| :---: | :--- |
| Description | Unable to get Auto Config Data |
| Release | Turn on the power again <br> (If the problem is not resolved after the power is turned on again, please contact our <br> sales department.) |


| Display | S8 CMD |
| :---: | :--- |
| Description | Received undefined command |
| Release | Receive a normal command |


| Display | S9 SYSTEM |
| :---: | :--- |
| Description | Internal processing error |
| Release | Turn on the power again <br> (If the problem is not resolved after the power is turned on again, please contact our <br> sales department.) |


| Display | S10 OVERHEAT1 |
| :---: | :--- |
| Description | 1st axis motor driver overheat alarm (Excitation on, Operation stopped) |
| Release | Lower the ambient temperature and wait until the "S10 OVERHEAT1" and "W3 <br> OVERHEAT1" display disappears. |


| Display | S10 OVERHEAT2 |
| :---: | :--- |
| Description | 2nd axis motor driver overheat alarm (Excitation on, Operation stopped) |
| Release | Lower the ambient temperature and wait until the "S10 OVERHEAT2" and "W3 <br> OVERHEAT2" display disappears. |


| Display | S10 OVERHEAT3 |
| :---: | :--- |
| Description | 3rd axis motor driver overheat alarm (Excitation on, Operation stopped) |
| Release | Lower the ambient temperature and wait until the "S10 OVERHEAT3" and "W3 <br> OVERHEAT3" display disappears. |


| Display | EMERGENCY |
| :---: | :--- |
| Description | Emergency stop input state |
| Release | Short circuit the EMG terminal on the terminal block |


| Display | W1 24 V OL IO |
| :---: | :--- |
| Description | 24 V output overload warning for I / O connector (Output voltage drop or cutoff) |
| Release | Remove the load and turn on the power about 10 seconds after the power is turned <br> off. |


| Display | W2 24V OL TB |
| :---: | :--- |
| Description | 24 V output overload warning for terminal block (Output voltage drop or cutoff) |
| Release | Remove the load and turn on the power about 10 seconds after the power is turned <br> off. |


| Display | W3 OVERHEAT1 |
| :---: | :--- |
| Description | 1st axis motor driver overheat warning |
| Release | Lower the ambient temperature or stop the operation and wait until the warning <br> disappears. |


| Display | W3 OVERHEAT2 |
| :---: | :--- |
| Description | 2nd axis motor driver overheat warning |
| Release | Lower the ambient temperature or stop the operation and wait until the warning <br> disappears. |


| Display | W3 OVERHEAT3 |
| :---: | :--- |
| Description | 3rd axis motor driver overheat warning |
| Release | Lower the ambient temperature or stop the operation and wait until the warning <br> disappears. |


| Display | W4 SPD SET1 |
| :---: | :--- |
| Description | 1st axis speed setting warning |
| Release | Change each speed to the Memory switch "AXIS" - "MAX SPEED1" or lower. |


| Display | W4 SPD SET2 |
| :---: | :--- |
| Description | 2nd axis speed setting warning |
| Release | Change each speed to the Memory switch "AXIS" - "MAX SPEED2" or lower. |


| Display | W4 SPD SET3 |
| :---: | :--- |
| Description | 3rd axis speed setting warning |
| Release | Change each speed to the Memory switch "AXIS" - "MAX SPEED3" or lower. |


| Display | W5 P*L******* |  |
| :---: | :---: | :---: |
| Description | A factor that stopped halfway during the program operation. |  |
| Turn off the <br> display | REMOTE mode top screen | Program mode |
|  | STOP button, ALMRST signal ON | STOP button, BEC: Command |

*) For detail, refer to "5-3-4. Display of Execution Stop Factors".

## Chapter 9: Specifications

## 9-1. Specifications

(1). General Specifications

| Power Source | AC100-240 $\pm 10 \%[\mathrm{~V}] 50 / 60[\mathrm{~Hz}]$ |
| :--- | :--- |
| Current Consumption | $2[\mathrm{~A}]$ |
| Operating Temperature | $5 \sim 40\left[{ }^{\circ} \mathrm{C}\right]$ |
| Storage Temperature | $-20 \sim 60\left[{ }^{\circ} \mathrm{C}\right]$ |
| Altitude | up to $2000[\mathrm{~m}]$ |

Indoor use only
Overvoltage Category II
Installation Category II
Pollution Degree 2

Disconnection Device AC connector
Ambient Humidity
External Dimensions
$20 \sim 80 \%[R H]$ (No condensation)

Weight 4.6 [kg]
(2). Performance

| Controlling Axis | 3 axis |
| :--- | :--- |
| Maximum Driving Speed (F) | $1 \sim 1000000$ [PPS] |
| Minimum Driving Speed (S) | $1 \sim 1000000$ [PPS] |
| Maximum Number of Travel Pulses | $-2147483648[P u l s e] \sim+2147483647$ [Pulse] |
| Acceleration/Deceleration Time (R) | $1 \sim 1000[m s]$ |

Sensor Input Origin sensor / Proximity sensor / CW (-) Limit / CCW (+) Limit (Memory switch can be used to change input logic for sensors.)

User Interface 9 switches

- Rotation 1 point
- Reverse rotation 1 point
- Return-to-origin 1 point
- Return-to-logical-origin 1 point
- Reset position coordinates to zero 1 point
- Operation mode change 1 point
- Operation axis select 1 point
- Stop 1 point


| Terminal Block | Emergency Stop Input | 1 point (Normally closed) |
| :--- | :--- | :--- |
|  | Trigger Pulse Output | 1 point |
|  |  | (open-collector output maximum use conditions |
|  |  | DC24[V] $30[\mathrm{~mA}]$ MAX) |
|  | 24 V Output | 1 point $(1[\mathrm{~A}] \mathrm{MAX})$ |

## (3). Driver Specifications

| Driver Type | Bi-polar new pentagon constant current drive system |
| :--- | :--- |
| Excitation Type | Micro-step |
| Driving Electric Current (output current) | $0.3 \sim 1.4[$ A/phase $]$ |
| Current Down (stop current) | $0 \sim 100 \%$ of the specified driving electric current |
| Division (micro-step) Settings | $1 \sim 8000$ divisions |

## 9-2. Outlines



# User's Manual (Command) SHOT / FC Mode 

# Three-axis Stage Controller 

SHRC-203

## Contents

1. Overview ..... 6
2. About double buffer ..... 6
1) List of commands using double buffer ..... 7
2) Setting command conditions .....  7
3) About the standby command .....  .7
4) About speed setting ..... 8
3. About replying to the setting command ..... 8
4. SHOT/FC mode command list ..... 9
1) *IDN? Command (Get device information) ..... 11
2) !: Command (Get positioning status 1) ..... 11
3) !:S command (Get positioning status 2: Detailed information) ..... 11
4) Q: Command (Get coordinate value and status 1 ) ..... 12
5) $Q: S$ command (Get coordinate value and status 2 : Detailed information) ..... 13
6) SRQ: Command (Get status 1) ..... 14
7) SRQ:S command (Get status 2 : Detailed information) ..... 15
8) ?:V command (Get setting 1: Version). ..... 16
9) ?:R command (Get setting 2: Scale resolution) ..... 16
10) ?:P command (Get setting 3 : Movement amount of 1 pulse) ..... 17
11) ?:S command (Get setting 4 : Motor driver division number) ..... 17
12) ?:AN command (Get setting 5 : Axis name) ..... 18
13) ?:D command (Get setting 6 : Movement speed setting value) ..... 19
14) ?:DS command (Get setting 7 : Minimum speed) ..... 20
15) ?:DF command (Get setting 8 : Maximum speed) ..... 21
16) ?:DR command (Get setting 9 : Acceleration / deceleration) ..... 22
17) $?: B$ command (Get setting 10 : Machine origin return speed setting value) ..... 23
18) ?:M command (Get setting 11: Relative movement [Execution buffer ]) ..... 24
19) ?:MP command (Get setting 12 : Relative movement [Prebuffer]) ..... 25
20) ?:A command (Get setting 13 : Absolute movement [Execution buffer ]) ..... 26
21) ?:AP command (Get setting 14 : Absolute movement [Prebuffer]) ..... 26
22) ?:E command (Get setting 15 : Arc interpolation [Execution buffer]). ..... 27
23) ?:EP command (Get setting 16 : Arc interpolation [Prebuffer]) ..... 28
24) ?:K command (Get setting 17 : Linear interpolation [Execution buffer]). ..... 28
25) ?:KP command (Get setting 18 : Linear interpolation [Prebuffer]) ..... 29
26) ?:O command (Get setting 19 : General-purpose output status) ..... 30
27) ?:W command (Get setting 20 : Wait time) ..... 30
28) ?:WT command (Get setting 21 : Wait time) ..... 30
29) ?:WI command (Get setting 22 : General-purpose input wait) ..... 31
30) ?:N command (Get setting 23 : Model name) ..... 31
31) ?:J command (Get setting 24 : Jog motion direction) ..... 32
32) ?:ACS command (Get setting 25 : Auto-config status) ..... 32
33) ?:C command (Get setting 26 : Motor excitation state) ..... 33
34) ?:F command (Get setting 27 : Stage control status) ..... 34
35) ?:SLEEP command (Get setting 28 : Sleep state) ..... 34
36) ?:BO command (Get setting 29 : The lighting status of the display) ..... 35
37) ?:MODE command (Get setting 30 : Mode) ..... 35
38) ?:FMT command (Get setting 31: Command format) ..... 35
39) ?:BEEP command (Get setting 32 : Beep sound setting status) ..... 36
40) ?:CMD command (Get setting 33 : Previous sendcommand) ..... 36
41) ?:L command (Get setting 34 : The program execution status) ..... 36
42) ?:T command (Get setting 35 : Trigger execution status) ..... 37
43) ?:SN command (Get setting 36: Serial number) ..... 38
44) ?:AXIS command (Get setting 37: Controllable axis) ..... 38
45) PSET: command (Coordinate value preset) ..... 38
46) RESET: command (Reset execution) ..... 39
47) SLEEP: command (Sleep execution) ..... 39
48) BO: command (Display lighting operation) ..... 40
49) MODE: command (Mode change) ..... 40
50) FMT: command (Command format change). ..... 40
51) F: command (Stage control method change) ..... 41
52) C: command (Motor state change). ..... 41
53) BEC: command (Positioning incomplete and error cancellation) ..... 42
54) BEEP: command (Beep operation) ..... 42
55) S: command (Number of divisions setting) ..... 43
56) W: command (Waiting time) ..... 43
57) WT: command (Wait for specified time [Prebuffer] ) ..... 44
58) WI: command (General purpose input state wait [Prebuffer]) ..... 44
59) H: command (Mechanical origin return 1) ..... 45
60) HRT: command (Mechanical origin return 2 : Completion reply). ..... 46
61) Z: command (Logical origin return 1) ..... 46
62) ZRT: command (Logical origin return 2 : Completion reply) ..... 47
63) R: command (Logical origin setting) ..... 48
64) RC: command (Initialization of logical origin setting) ..... 48
65) L: command (Stop operation 1) ..... 49
66) L:E command (Stop operation 2 : Emergency stop) ..... 50
67) M: command (Relative movement amount setting 1 : [Execution buffer]) ..... 50
68) MP: command (Relative movement amount setting 2 : [Prebuffer]) ..... 51
69) A: command (Absolute coordinate value setting 1 : [Execution buffer]). ..... 53
70) AP: command (Absolute coordinate value setting 2 : [Prebuffer]) ..... 55
71) E:0 command (Arc interpolation 1 : Perfect circle [Execution buffer]) ..... 57
72) E:1 command (Arc interpolation 2 : Angle [Execution buffer]) ..... 58
73) E:2 command (Arc interpolation 3 : Passing point [Execution buffer]) ..... 60
74) E:3 command (Arc interpolation 4 : Perfect circle helical [Execution buffer]) ..... 61
75) E:4 command (Arc interpolation 5 : Angle helical [Execution buffer]) ..... 63
76) E:5 command (Arc interpolation 6 : Passing point helical [Execution buffer]) ..... 64
77) EP:0 command (Arc interpolation 1 : Perfect circle [Prebuffer]) ..... 66
78) EP:1 command (Arc interpolation 8 : Angle [Prebuffer]). ..... 68
79) EP:2 command (Arc interpolation 9 : Passing point indication [Prebuffer]) ..... 70
80) EP:3 command (Arc interpolation 10 : Perfect circle helical [Prebuffer]) ..... 72
81) EP:4 command (Arc interpolation 11: Angular helical [Prebuffer]) ..... 75
82) EP:5 command (Arc interpolation 12 : Passing point indication helical [Prebuffer]) ..... 77
83) K: command (Linear interpolation 1 : [Execution buffer]) ..... 80
84) KP: command (Linear Interpolation 2 : [Prebuffer]). ..... 81
85) G command (Start operation 1) ..... 82
86) G: command (Start operation 2) ..... 83
87) GC: command (Delete operation setting value) ..... 83
88) J: command (Jog driving operation 1) ..... 84
89) D: command (Speed setting) ..... 85
90) DS: command (Minimum speed setting) ..... 86
91) DF: command (Maximum speed setting) ..... 87
92) DR: command (Acceleration / deceleration setting) ..... 88
93) JD: command (Setting for speed override during jog operation) ..... 89
94) B: command (Origin return speed setting) ..... 90
95) I: command (General-purpose IO input confirmation) ..... 92
96) O: command (General-purpose IO output command) ..... 93
97) T:T command (Trigger output 1 : Timer value specified). ..... 94
98) T:P command (Trigger output 2 : Pulse value specified) ..... 95
99) T:S command (Trigger output 3 : Pulse output prohibited) ..... 95
100) T:M command (Trigger output 4 : One-shot trigger output) ..... 95
101) T:E command (Trigger output 5 : Scale pulse value specified) ..... 96
102) P:R command (Program 1 : Program mode transition) ..... 96
103) P:H command (Program 2 : Transition to host mode) ..... 96
104) P:P command (Program 3 : Program number designation) ..... 97
105) P:S command (Program 4 : Program operation : Operation start) ..... 97
106) P:O command (Program 5 : Program operation : One-line execution operation start) ..... 97
107) P:E command (Program 6 : Program operation : Stop operation) ..... 97
108) P:U command (Program 7: Program operation : Pause) ..... 98
109) P:C command (Program 8 : Program operation : Send completion signal) ..... 98
110) P:T command (Program 9 : Program operation : Send trigger signal) ..... 98
111) P:ON command (Program 10 : Shift to edit mode) ..... 99
112) P:OFF command (Program 11 : Program mode transition) ..... 99
113) P:DEL command (Program 12 : Delete program line designation) ..... 99
114) P:SET command (Program 13 : Program line designation setting) ..... 99
115) P:GET command (Program 13 : Get program line designation) ..... 115
116) P: INIT command (Program 15 : Delete all lines of the program) ..... 126
117) MS:ON command (Memory switch operation 1 : Edit mode transition) ..... 126
118) MS:OFF command (Memory switch operation 2 : Host mode transition) ..... 126
119) MS:SET command (Memory switch operation 3 : Setting) ..... 127
120) MS:GET command (Memory switch operation 4 : Get). ..... 127
121) MS:DEF command (Memory switch operation 5 : Initialization) ..... 128
122) MS:DEFR command (Memory switch operation 6 : Get the initial value) ..... 129
123) MS:SETK command (Memory switch operation command 3 : Setting command) ..... 129
124) MS:GETK command (Memory switch operation 4 : Get) ..... 130
125) MS:DEFK command (Memory switch operation 5 : Initialization) ..... 130
126) MS:DEFRK command (Memory switch operation 6 : Get the initial value) ..... 131
127) PIT:DEL command (Position registration 1 : Delete) ..... 132
128) PIT:SET command (Position registration 2 : Registration) ..... 132
129) PIT:GET command (Position registration 3 : Get) ..... 132
130) PIT:G command (Position registration 4 : Operation 1) ..... 133
131) PIT:GRT command (Position registration 5 : Operation order 2 : Completion reply) ..... 133
132) PAV:DEL command (Coordinate value registration 1 : Delete) ..... 134
133) PAV:SET command (Coordinate value registration 2 : Registration) ..... 134
134) PAV:GET command (Coordinate value registration 3 : Get). ..... 134
135) PAV:G command(Coordinate value registration 4 : Operation 1) ..... 135
136) PAV:GRT command (Coordinate value registration 5 : Operation 2 : Completion reply)

## 1. Overview

This document describes the commands in the command format SHOT / FC mode in the 3 -axis stage controller SHRC-203.

To use the command format SHOT / FC mode, select "SHOT / FC" with the memory switch "GENERAL"-"CMD FORMAT", or specify "SHOT / FC" with the "FMT:" command is needed. Before using, please understand the contents of the separate volume "Preparation and Operation".

## 2. About double buffer

In addition to the normal commands, SHRC-203 has a prebuffer command that can be sent in advance to automatically perform the next operation after the execution is completed.
When the operation setting is made in the prebuffer, the prebuffer setting value is migrated to the execution buffer, the prebuffer setting value is deleted, and the operation is started with the migrated execution buffer setting value.
When the execution buffer operation is completed, the prebuffer setting value is transferred to the execution buffer, the prebuffer setting value is deleted, and the operation completion character is returned.
After that, the operation starts with the automatically migrated execution buffer setting value. Continuous execution is possible by setting the prebuffer between the reply of the operation completion character and the reply of the next operation completion character.

If the prebuffer cannot be set during this reply, the automatic execution will end.


1) List of commands using double buffer

| Commands | Contents | Memo |
| :--- | :--- | :--- |
| MP: | Relative travel distance setting | Prebuffer settings |
| AP: | Absolute travel distance setting | Prebuffer settings |
| EP: | Circle interpolation operation | Prebuffer settings |
| KP: | Linear interpolation operation | Prebuffer settings |
| WT: | Timed wait standby |  |
| WI: | General-purpose input standby |  |
| G | Start operation |  |
| G: | Start operation |  |

2) Setting command conditions

Refer to the table below for the conditions for using the setting command.

| Commands | MP: | AP: | KP: | EP: |
| :--- | :---: | :---: | :---: | :---: |
| Before the start <br> of operation | Write in <br> Overwrite |
| in operation | Write in <br> Overwrite |

To change the contents of the prebuffer, set it again.

3) About the standby command

It is possible to set a wait condition in the prebuffer, and there are two ways to specify the wait time, one is to specify the wait time and the other is to specify the generalpurpose input status.

- Timed wait standby

It can be used by sending the WT: command to the prebuffer, set the wait time from 0.1 to 256 seconds, and wait until the specified time is reached. After waiting, if there is a registration in the prebuffer, the prebuffer setting value moves to the execution buffer and the setting value is executed. The standby state can be canceled halfway by sending the WT: *, C command, and if there is a registration in the prebuffer, the prebuffer setting value is executed.(* Is the axis designation)

- General-purpose input standby

It can be used by sending the WI: command to the prebuffer, set general-purpose input conditions 0 to 63, and wait until the same conditions are met. After waiting, if there is a registration in the prebuffer, the prebuffer setting value moves to the execution buffer and the setting value is executed.By sending the WI: *, C command, the standby state can be canceled halfway, and if there is a registration in the prebuffer, the prebuffer setting value is executed.(* Is the axis designation)
4) About speed setting

When setting the prebuffer, the speed can be set along with the operation setting values using the MP :, AP :, KP :, and EP: commands.
The speed setting of the MP: and AP: commands sets the minimum speed, maximum speed, and acceleration / deceleration time for the operation specified axis.
KP :, EP: Command speed settings set the minimum speed, maximum speed, and acceleration / deceleration time for the axis with the smallest axis number to be interpolated.

## 3. About replying to the setting command

After sending the setting command, there will be a reply with the specified characters.
See below.

| Reply | Contents |
| :--- | :--- |
| OK | Replied when the command is successfully accepted. |
| OK_D | After operating with the command for double buffer, it is replying when it is <br> successfully set to the prebuffer. |
| NG | Replied when the command was not accepted. <br> Make sure the command string is correct. Also, please note that each <br> command has transmission conditions. |
| NG_I | The reply will be returned if it contains NULL of ASCII code or non-ASCII code <br> characters. |

## 4. SHOT/FC mode command list

| command |  |
| :--- | :--- |
| *IDN? | Equipment information |
| !: | Get the status (positioning information) |
| Q: | Get the status (coordinate values, Status, positioning information) |
| SRQ: | Get the status (status, positioning information) |
| $?:$ | Setting information |
| PSET: | Coordinate value preset |
| RESET: | Perform a reset |
| SLEEP: | Run and wake up sleep |
| BO: | Front panel blackout |
| MODE: | Mode change |
| F: | Change of stage control method (Close and Open) |
| C: | Change of motor state (excitation and demagnetization) |
| BEC: | Execution of positioning incompleteness and error cancellation |
| BEEP: | Beep operation |
| S: | Switching the number of divisions |
| W: | Wait time setting |
| WT: | Wait for specified time (prebuffer setting) |
| WI: | purpose input state standby (prebuffer setting) |
| H: | Perform mechanical origin return |
| HRT: | Execute mechanical origin return (completion Reply) |
| Z: | Logical origin return |
| ZRT: | Execute logical origin return (completion Reply) |
| R: | logical origin setting (zero set) |
| L: | Operation stop and emergency stop |
| M: | Relative movement amount setting (execution buffer setting) |
| MP: | Relative movement amount setting (pre-buffer setting) |
| A: | Absolute coordinate value setting (execution buffer setting) |
| AP: | Absolute coordinate value setting (pre-buffer setting) |
| E: | Arc interpolation (execution buffer setting) |
| EP: | Arc interpolation (pre-buffer setting) |
| K: | Linear interpolation (execution buffer setting) |
| KP: | Linear interpolation (pre-buffer setting) |
| G | Start operation |
| G: | Start operation |


| command | Contents |
| :--- | :--- |
| GC: | Delete operation setting value (execution buffer) |
| J: | Jog operation command |
| JO: | Jog operation (with speed override function) |
| D: | Speed setting |
| DS: | Minimum speed setting |
| DF: | Maximum speed setting |
| DR: | Acceleration / deceleration settings |
| I: | Check the general-purpose input status |
| O: | Change general-purpose output status |
| T: | Trigger output |
| P: | Internal program |
| MS: | Memory switch setting |
| PIT: | Location registration |
| PAV: | Coordinate value registration |
| FMT: | Command format settings |

*) If there is a description about the memory switch, refer to the separate "Preparation and Operation".
*) "* IDN?" "?: MODE" "?: CMD" "MODE:" can be used in all operation modes (HOST, MANUAL, REMOTE, TEACH, EDIT, TEST).

1) *IDN? Command (Get device information)

- Description

Get controller information.
*) Can be used in all operation modes (HOST, MANUAL, REMOTE, TEACH, EDIT, TEST).

- Command format

Send) *IDN?
Reply) v,m,s,f

- Parameters

Reply) v: Vendor name
m : Model name
$s$ : Serial number
$f$ : Firmware version

- Example

| Send | Reply |
| :--- | :--- |
| *IDN? | SIGMAKOKI, SHRC-203,2106001001,V2.00.000 |

2) !: Command (Get positioning status 1)

- Description

Get the positioning status.

- Command format

Send) !:
Reply) r

- Parameters

Reply) r : Positioning status R or B
R All controllable axes have been positioned (READY)
B One of the controllable axes has not been positioned (BUSY)

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| $!:!$ | R | All controllable axes are READY |

3) !:S command (Get positioning status 2: Detailed information)

- Description

Get the positioning status of each axis.

- Command format

Send) !:aS
Reply) r1, r2, r3

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes

Reply) $\quad \mathrm{r}$ : 1st axis positioning state R or B
r 2 : 2nd axis positioning state R or B
r3 : 3rd axis positioning state R or B
R Positioning of all controllable axes is complete (READY)
B Designated axis has not been positioned (BUSY)

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| $!: S$ | R,R,R | There are 3 controllable axes, and all axes are READY. |
| $!: S$ | R,R | There are 2 controllable axes, and all axes are READY. |
| $!: 1 S$ | R | 1st axis is READY |
| $!: A S$ | R,R | 1st and 2nd axes are READY |

4) Q: Command (Get coordinate value and status 1)

- Description

Get the coordinate value and status.

- Command format

Send) Q:
Reply) c1,c2,c3,e,s,r

- Parameters

Reply) c1: 1st axis coordinate value
c2 : 2nd axis coordinate value
c3 : 3rd axis coordinate value
*) Fixed to 10digits including the Sign.
*) Sign left justified, coordinates right justified.
e : Command error judgment
X Command error or parameter error
K Command accepted normally
s : status
1 1st axis LS stop
2 2nd axis LS stop
3 3rd axis LS stop
C 1st axis and 2nd axis L S Stop
D 1st axis and 3rd axis L S Stop
E 2nd axis and 3rd axis LS Stop
W All axes LS stop
R Error stop (S1,S2,S3,S4,S5,S6,S7,S9,S10,EMERGENCY)
*) For S1 to 10 and EMERGENCY, refer to the separate "Preparation and Operation".
K Normal stop
$r$ : Axis positioning state $R$ or $B$
R controllable axes have been positioned (READY)
B One of the controllable axes has not been positioned (BUSY)
*) Each item in the reply is separated by "," (comma).

- Example

The 1st axis coordinate value is +200 pls , the 2 nd axis coordinate value is -200 pls , and the 3rd axis coordinate value is +100000 pls.

| Send | Reply |
| :---: | :---: |
| Q: | + + |

5) $\mathrm{Q}: \mathrm{S}$ command (Get coordinate value and status 2 : Detailed information)

- Description

Get the coordinate values and detailed status of each axis.

- Command format

Send) Q:Su
Reply) c1,c2,c3,s1,s2,s3,r1,r2,r3

- Parameters

Send) u : Unit setting N / U / M / D / P
N nanometer designation
U micrometer designation
M mm designation
D degree designation
P Designation without unit (pulse)
No designation (Memory switch STAGE UNIT setting for each axis)
Reply) c1: 1st axis Unit (P, N, U, M, D) and coordinate values
c2 : 2nd axis Unit (P, N, U, M, D) and coordinate values
c3 : 3rd axis Unit (P, N, U, M, D) and coordinate values
*) Reply 0 if the axis is invalid. Unlike "Q:" command, it is right-justified.
s1: 1st axis status $\quad 0 \sim 1$ 1FFFFFF (Hexadecimal number)
s2: 2nd axis status $\quad 0 \sim 1$ 1FFFFFF (Hexadecimal number)
s3: 3rd axis status $0 \sim 1$ 1FFFFFF (Hexadecimal number)
1bit $\quad$ Normal (S1 to S10 and emergency stop has not occurred)
2bit Command error
3bit Scale error (S1)
4bit Disconnection error (S2)
5bit Overflow error (S4)
6bit Emergency stop
7bit Hunting error (S3)
8bit Limit error (S5)
9bit Counter overflow (S6)
10bit Auto config error
11bit 24 V IO overload warning (W1)
12bit 24 V terminal block overload warning (W2)
13bit System error (S7)
14bit Motor driver overheat warning (W3)
15bit Motor driver overheat error (S10)
16bit Out of in-position range
(after positioning is completed) (READY)
17bit Out of in-position range (During positioning operation) (BUSY)
18bit Logical origin return is in progress
19bit Mechanical origin return is in progress
20bit CW limit detection
21bit CCW limit detection
22bit CW software limit stop
23bit CCW software limit stop
24bit NEAR sensor detection
25bit ORG sensor detection
${ }^{*}$ ) ON when bit is 1 . OFF when bit is 0 . If the axis is invalid, reply 0 in hexadecimal.
r1: 1st axis positioning state R or B or D
r2 : 2nd axis positioning state R or B or D
r3 : 3rd axis positioning state R or B or D
R Positioning of all controllable axes is complete (READY)
B Designated axis has not been positioned (BUSY)
D Axis invalid
*) Each item in the reply is separated by "," (comma).

- Example

The 1st axis coordinate value is -1 mm , the 2 nd axis coordinate value is +2 mm , the 3rd axis coordinate value is +3 mm , the 1st axis is normal and READY, the $2 n d$ axis is normal and BUSY, and the 3rd axis scale error is BUSY.

| Send | Reply | Remarks |
| :---: | :---: | :---: |
| $\mathrm{Q}: \mathrm{SM}$ | $\mathrm{M}-1, \mathrm{M}+2, \mathrm{M}+3,1,1,4, \mathrm{R}, \mathrm{B}, \mathrm{B}$ | mm specification |

6) SRQ: Command (Get status 1)

- Description

Get the status.

- Command format

Send) SRQ:
Reply) e,s,r

- Parameters

Reply) e: Command error judgment
X Command error or parameter error
K Command accepted normally
s : Status
1 1st axis LS stop
2 2nd axis LS stop
3 3rd axis LS stop
C 1st axis and 2nd axis LS Stop
D 1st axis and 3rd axis LS Stop
E 2nd axis and 3rd axis LS Stop
W All axes LS stop
R Error stop (S1,S2,S3,S4,S5,S6,S7,S9,S10,EMERGENCY)
*) For S1 to 10 and EMERGENCY, refer to the separate "Preparation and Operation".
K Normal stop $r$ : Axis positioning state $R$ or $B$

R controllable axes have been positioned (READY)
B One of the controllable axes has not been positioned (BUSY)
*) Each item in the reply is separated by "," (comma).
-Example

| Send | Reply | Contents |
| :---: | :---: | :--- |
| SRQ: | K, K, R | All controllable axes accept commands normally, stop normally, <br> READY |

7) SRQ:S command (Get status 2 : Detailed information)

- Description

Get the detailed status of each axis.

- Command format

Send) SRQ:aS
Reply) e1,e2,e3,s1,s2,s3,r1,r2,r3

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
Reply) s1: 1st axis status $0 \sim 1$ 1FFFFFF (Hexadecimal number)
s2: 2nd axis status $0 \sim 1$ 1FFFFFF (Hexadecimal number)
s3: 3rd axis status $0 \sim 1 F F F F F F$ (Hexadecimal number)
1bit $\quad$ Normal (S1 to S10 and emergency stop has not occurred)
2bit Command error
3bit Scale error (S1)
4bit Disconnection error (S2)
5bit Overflow error (S4)
6bit Emergency stop
7bit Hunting error (S3)
8bit Limit error (S5)
9bit Counter overflow (S6)
10bit Auto config error
11bit 24 V IO overload warning (W1)
12bit 24 V terminal block overload warning (W2)
13bit System error (S7)
14bit Motor driver overheat warning (W3)
15bit Motor driver overheat error (S10)
16bit Out of in-position range
(after positioning is completed) (READY)
17bit Out of in-position range (During positioning operation) (BUSY)
18bit Logical origin return is in progress
19bit Mechanical origin return is in progress
20bit CW limit detection
21bit CCW limit detection
22bit CW software limit stop
23bit CCW software limit stop
24bit NEAR sensor detection
25bit ORG sensor detection
*) ON when bit is 1 . OFF when bit is 0 . If the axis is invalid, reply 0 in hexadecimal.

$$
r 1 \text { : 1st axis positioning state } R \text { or } B
$$

r : 2nd axis positioning state R or B
r3:3rd axis positioning state $R$ or $B$
R Positioning of all controllable axes is complete (READY)
B Designated axis has not been positioned (BUSY)
D Axis invalid
*) Each item in the reply is separated by "," (comma).

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| SRQ:S | $1,1,1, R, B, R$ | The controllable axis is 3 axes, all axes are normal, and <br> only the 2nd axis is BUSY. |
| SRQ:S | $1,1, R, B$ | The controllable axis is 2 axes, all axes are normal, and <br> only the 2nd axis is BUSY. |
| SRQ:1S | $1, R$ | 1 1st axis is normal and READY |
| SRQ:AS | $1,1, R, R$ | 1st and 2nd axes are normal and READY |

8) ?:V command (Get setting 1: Version)

- Description

Get the firmware version.

- Command format

Send) ?:V
Reply) f

- Parameters

Reply) f: Firmware version

- Example

| Send | Reply |
| :--- | :--- |
| $?: \mathrm{V}$ | V 2.00 .000 |

9) ?:R command (Get setting 2: Scale resolution)

- Description

Gets the scale resolution.

- Command format

Send) ?:Ra
Reply) r

- Parameters

Send) a: Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
Reply) r: Scale resolution (Unit: nm )
-xample

| Send | Reply | Contents |
| :--- | :--- | :--- |
| $?: \mathrm{R}$ | $1,1,1$ | There are 3 controllable axes, and the scale resolution <br> of all axes is 1 nm. |
| $?: \mathrm{R}$ | 1,1 | There are 2 controllable axes, and the scale resolution <br> of all axes is 1 nm. |
| $?: \mathrm{R} 1$ | 1 | Scale resolution of the first axis is 1 nm |
| $?:$ RA | 1,1 | 1st and 2nd axis scale resolution is 1 nm |

10) ?:P command (Get setting 3 : Movement amount of 1 pulse)

- Description

Get the movement amount of 1 pulse calculated from the memory switch "AXIS""BASE RATE" and "MOTOR DRIVER"-"DIVIDE".

- a formula

1 pulse movement amount (nm) = (BASE RATE * 10) / DIVIDE
Example: BASE RATE $=200$, DIVIDE $=2000$
(200 * 10) / $2000=1 \mathrm{~nm}$

- Command format

Send) ?: Pa
Reply) $p$

- Parameters

Send) a: Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
Reply) p: Movement amount of 1 pulse (Unit: nm)

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| ?: P | $1,1,1$ | The controllable axis is 3 axes, and the movement amount of 1 <br> pulse of all axes is 1 nm. |
| ?: P | 1,1 | There are two controllable axes, and the amount of movement of <br> one pulse on all axes is 1 nm. |
| ?: P1 | 1 | The amount of movement of one pulse on the first axis is 1 nm |
| ?: PA | 1,1 | The amount of movement of one pulse on the first and second <br> axes is 1 nm. |

11) ?:S command (Get setting 4 : Motor driver division number)

- Description

Gets the number of divisions of the motor driver.

- Command format

Send) ?: Sa
Reply) m

| - Parameters |  |  |
| :---: | :---: | :---: |
|  |  |  |
| 1st axis designation |  |  |
|  | 2 | 2nd axis designation |
| 3rd axis designation |  |  |
| A 1st axis and 2nd axis designation |  |  |
| B 1st axis and 3rd axis designation |  |  |
| C 2nd and 3rd axis designation |  |  |
| D 1st axis, 2nd axis and 3rd axis designation |  |  |
| W Specify all controllable axes |  |  |
| Not specified Specify all controllable axes |  |  |
| Reply) m: Number of motor driver divisions |  |  |
| - Example |  |  |
| Send | Reply | Contents |
| ?:S | 80,80,80 | There are 3 Controllable axes, and the number of motor driver divisions for all axes is 80 . |
| ?:S | 80,80 | There are 2 Controllable axes, and the number of motor driver divisions for all axes is 80 . |
| ?:S1 | 80 | The number of motor driver divisions for the first axis is 80 |
| ?:SA | 80,80 | The number of motor driver divisions for the 1st and 2nd axes is 80 |

12) ?:AN command (Get setting 5 : Axis name )

- Description

Get the setting contents (axis name) of the memory switch "AXIS"-"AXIS NAME".

- Command format

Send) ?: ANa
Reply) $n$

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
Reply) n : Axis names 1-9, A-Z

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| ?:AN | $1,2,3$ | The Controllable axis is 3 axes, the 1st axis axis name is "1", the <br> 2nd axis axis name is "2", and the 3rd axis axis name is "3". |
| ?:AN | 1,2 | Memory switch "GENERAL"-When "AXIS" is $1+2$ + the 1st axis <br> axis name is "1" and the 2nd axis axis name is "2". |
| ?:AN1 | 1 | 1st axis axis name is "1" |
| ?:ANA | 1,2 | The 1st axis name is "1", the 2nd axis axis name is "2" |
| ?:AN1 | X | 1st axis axis name is "X" |

13) ?:D command (Get setting 6 : Movement speed setting value)

- Description

Get the movement speed set by "D: Command".

- Command format

Send) ?:Da
Reply) d

- Parameters

Send) a: Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
Reply) d: Operating speed setting value (S) (F) (R)

- Example 1

| Send | Reply | Contents |
| :---: | :---: | :---: |
| ?:D | S100F1000R100, S200F2000R200, S300F3000R300 | There are 3 controllable axes, <br> - The operating speed of the 1 st axis is the minimum speed (S) $100 \mathrm{pls} / \mathrm{s}$, the maximum speed (F) $1000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time (R) 100 ms . <br> - The operating speed of the $2 n d$ axis is the minimum speed (S) $200 \mathrm{pls} / \mathrm{s}$, the maximum speed ( F ) $2000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time (R) 200 ms . <br> - The operating speed of the 3rd axis is the minimum speed (S) $300 \mathrm{pls} / \mathrm{s}$, the maximum speed ( F ) $3000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time (R) 200 ms . |
| ?:D | S100F1000R100, <br> S200F2000R200 | When the memory switch "GENERAL"-"AXIS" is "1 + 2", <br> - The operating speed of the 1st axis is the minimum speed (S) $100 \mathrm{pls} / \mathrm{s}$, the maximum speed (F) $1000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time (R) 100 ms . <br> - The operating speed of the 2nd axis is the minimum speed (S) $200 \mathrm{pls} / \mathrm{s}$, the maximum speed ( F ) $2000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time (R) 200 ms . |

- Example 2

| Send | Reply | Contents |
| :---: | :---: | :---: |
| ?:D1 | S100F1000R100 | - The operating speed of the 1 st axis is the minimum speed (S) $100 \mathrm{pls} / \mathrm{s}$, the maximum speed (F) $1000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time (R) 100 ms . |
| ?:DA | S100F1000R100, S200F2000R200 | - The operating speed of the 1 st axis is the minimum speed (S) $100 \mathrm{pls} / \mathrm{s}$, the maximum speed (F) $1000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time (R) 100 ms . <br> - The operating speed of the $2 n d$ axis is the minimum speed (S) $200 \mathrm{pls} / \mathrm{s}$, the maximum speed ( F ) $2000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time (R) 200 ms . |

14) ?:DS command (Get setting 7 : Minimum speed)

- Description

Get the minimum speed set by "D: Command".

- Command format

Send) ?:DSa,u
Reply) uspd

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
u: Unit setting
F Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation
Reply) u: Unit setting
F Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation
spd : Operating speed
F Setting range: $1 \sim 1,000,000$ (Unit: pls/s)
N Setting range: pls/s converted to nm
(Example: N1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
U Setting range: pls/s converted to $\mu \mathrm{m}$
(Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
M Setting range: pls/s converted to mm
(Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
D Setting range: $\mathrm{pls} / \mathrm{s}$ converted to an angle
(Example: D0.001 when the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$ )

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| ?:DS | $1000,2000,3000$ | The controllable axis is 3 axes, the 1 st axis is $1000 \mathrm{pls} / \mathrm{s}$, <br> the 2nd axis is $2000 \mathrm{pls} / \mathrm{s}$, and the 3rd axis is $3000 \mathrm{pls} / \mathrm{s}$. |
| ?:DS | 1000,2000 | When the memory switch "GENERAL"-"AXIS" is "1 + 2", <br> the 1st axis is $1000 \mathrm{pls} / \mathrm{s}$ and the 2 nd axis is $2000 \mathrm{pls} / \mathrm{s}$. |
| ?:DS1 | 1000 | The 1st axis is $1000 \mathrm{pls} / \mathrm{s}$ |
| ?:DSA | 1000,2000 | The 1st axis is $1000 \mathrm{pls} / \mathrm{s}$ and the 2 nd axis is $2000 \mathrm{pls} / \mathrm{s}$. |
| ?:DS2,U | 10 | The second axis is $10 ~ \mu \mathrm{~m} / \mathrm{s}$ |

15) ?:DF command (Get setting 8 : Maximum speed)

- Description

Get the maximum speed set by "D: Command".

- Command format

Send) ?:DFa,u
Reply) uspd

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
u : Unit setting
F Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation

Reply) u: Unit setting
F Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation spd : Operating speed

F Setting range: 1 ~ 1,000,000 (Unit: pls/s)
N Setting range: pls/s converted to nm
(Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
U Setting range: pls/s converted to $\mu \mathrm{m}$
(Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
M Setting range: pls/s converted to mm
(Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
D Setting range: pls/s converted to an angl
(Example: D0. 001 when the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$ )

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| ?:DF | $1000,2000,3000$ | The controllable axis is 3 axes, the 1st axis is $1000 \mathrm{pls} / \mathrm{s}$, <br> the 2nd axis is $2000 \mathrm{pls} / \mathrm{s}$, and the 3rd axis is $3000 \mathrm{pls} / \mathrm{s}$. |
| ?:DF | 1000,2000 | When the memory switch "GENERAL"-"AXIS" is "1 $+2 "$, <br> the 1st axis is $1000 \mathrm{pls} / \mathrm{s}$ and the 2 nd axis is $2000 \mathrm{pls} / \mathrm{s}$. |
| ?:DF1 | 1000 | The 1st axis is $1000 \mathrm{pls} / \mathrm{s}$ |
| ?:DFA | 1000,2000 | The 1st axis is $1000 \mathrm{pls} / \mathrm{s}$ and the 2nd axis is $2000 \mathrm{pls} / \mathrm{s}$. |
| ?:DF2,U | 10 | The 2 nd axis is $10 \mu \mathrm{~m} / \mathrm{s}$ |

16) ?:DR command (Get setting 9 : Acceleration / deceleration)

- Description

Get the acceleration / deceleration time set by "D: Command".

- Command format

Send) ?:DRa
Reply) r

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
Reply) $r$ : Acceleration / deceleration time (R) setting $1 \sim 1000$ (Unit: ms)

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| ?:DR | $50,100,150$ | The Controllable axis is 3 axes, the 1st axis is 50 ms , the <br> 2nd axis is 100 ms , and the 3rd axis is 150 ms. |
| ?: DR | 50,100 | When the memory switch "GENERAL"-"AXIS" is "1 $+2 "$, <br> the 1 st axis is 50 ms and the 2nd axis is 100 ms. |
| ?: DR1 | 50 | The 1st axis is 50 ms |
| ?: DRA | 50,100 | 1st axis is $50 \mathrm{~ms}, 2 \mathrm{nd}$ axis is 100 ms |

17) ?:B command (Get setting 10 : Machine origin return speed setting value)

- Description

Get the movement speed set by "B: Command".

- Command format

Send) ?:Ba
Reply) d

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
Reply) d: Operating speed setting value (S) (F) (R)

- Example 1

| Send | Reply | Contents |
| :---: | :---: | :---: |
| ?:B | S100F1000R100, S200F2000R200, S300F3000R300 | There are 3 controllable axes, <br> - The operating speed of the 1st axis is the minimum speed (S) $100 \mathrm{pls} / \mathrm{s}$, the maximum speed (F) $1000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time (R) 100 ms . <br> - The operating speed of the $2 n d$ axis is the minimum speed (S) $200 \mathrm{pls} / \mathrm{s}$, the maximum speed ( F ) $2000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time (R) 200 ms . <br> - The operating speed of the 3rd axis is the minimum speed (S) $300 \mathrm{pls} / \mathrm{s}$, the maximum speed (F) $3000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time (R) 200 ms . |
| ?:B | $\begin{aligned} & \text { S100F1000R100, } \\ & \text { S200F2000R200 } \end{aligned}$ | When the memory switch "GENERAL"-"AXIS" is "1 + 2", <br> - The operating speed of the 1st axis is the minimum speed (S) $100 \mathrm{pls} / \mathrm{s}$, the maximum speed (F) $1000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time (R) 100 ms . <br> - The operating speed of the $2 n d$ axis is the minimum speed (S) $200 \mathrm{pls} / \mathrm{s}$, the maximum speed ( F ) $2000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time (R) 200 ms . |

- Example 2

| Send | Reply | Contents |
| :---: | :---: | :---: |
| ?:B1 | S100F1000R100 | - The operating speed of the 1st axis is the minimum <br> speed (S) 100 pls/s, the maximum speed (F) $1000 \mathrm{pls} / \mathrm{s}$, <br> and the acceleration / deceleration time (R) 100 ms. |
| ?:BA | - The operating speed of the 1 st axis is the minimum <br> speed (S) 100 pls $/ \mathrm{s}$, the maximum speed (F) $1000 \mathrm{pls} / \mathrm{s}$, <br> and the acceleration / deceleration time (R) 100 ms. <br> - The operating speed of the 2nd axis is the minimum <br> Speed (S) 200 pls/s, the maximum speed (F) 2000 pls $/ \mathrm{s}$, <br> S200F2000R200 <br> and the acceleration / deceleration time (R) 200 ms |  |

18) ?:M command (Get setting 11 : Relative movement [Execution buffer ] )

- Description

Get the movement amount set by "M: Command".

- Command format

Send) ?:Ma,u
Reply) m

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
$u$ : Unit setting
P Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation
No designation Designation without unit (pulse)
Reply) $\mathrm{m}:$ Movement amount (Unit: pls)

- Example 1

| Send | Reply | Contents |
| :--- | :--- | :--- |
| ?:M | $1000,2000,3000$ | The controllable axis is 3 axes, the 1 st axis is 1000 pls, <br> the 2nd axis is 2000 pls, and the 3rd axis is 1000 pls. |
| ?:M | 1000,2000 | When the memory switch "GENERAL"-"AXIS" is " $1+2 "$, <br> the 1 st axis is 1000 pls and the 2nd axis is 2000 pls. |
| ?:M1 | 1000 | The 1st axis is 1000 pls |
| ?:MA | 1000,2000 | 1st axis is 1000 pls, 2nd axis is 2000 pls |
| ?:M1,M | 0.01 | The 1st axis is 0.01 mm |
| ?:M | NS,NS | Not set when the controllable axes are 1 axis and 2 axes |

- Example 2

| Send | Reply | Contents |
| :--- | :--- | :--- |
| ?:M | NS,NS,NS | Not set when the controllable axes are 1, 2, and 3 axes. |
| ?:M1 | NS | Not set |
| ?:MA | NS,NS | Not set |

19) ?:MP command (Get setting 12 : Relative movement [Prebuffer])

- Description

Get the amount of movement set in "MP: Command".
*) "MP: command" is a command to preset the amount of movement in the relative value of the next execution. refer to "65,66) MP: Commands" for more information.

- Command format

Send) ?: MPa, u
Reply) m

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
u : Unit setting
P Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation
No designation Designation without unit (pulse)
Reply) m: Movement amount (Unit: pls)

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| ?:MP | $1000,2000,3000$ | The Controllable axis is 3 axes, the 1st axis is 1000 pls, <br> the 2nd axis is 2000 pls, and the 3rd axis is 1000 pls. |
| ?:MP | 1000,2000 | When the memory switch "GENERAL"-"AXIS" is "1 + " $", ~$ <br> the first axis is 1000 pls and the 2nd axis is 2000 pls. |
| ?:MP1 | 1000 | The 1st axis is 1000 pls |
| ?:MPA | 1000,2000 | 1st axis is 1000 pls, 2nd axis is 2000 pls |
| ?:MP1,M | 0.01 | The 1st axis is 0.01 mm |
| ?:MP | NS,NS | Not set when the controllable axes are 1 axis and 2 axes |
| ?:MP | NS,NS,NS | Not set when the controllable axes are 1, 2, and 3 axes. |
| ?:MP1 | NS | Not set |
| ?:MPA | NS,NS | Not set |

20) ?:A command (Get setting 13 : Absolute movement [Execution buffer ])

- Description

Get the destination coordinate value set in "A: Command".

- Command format

Send) ?:Aa,u
Reply) m

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
u : Unit setting
P Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation
No designation Designation without unit (pulse)
Reply) m: Movement amount (Unit: pls)

- Example

| Send | Reply | Contents |
| :---: | :---: | :---: |
| ?:A | 1000,2000,3000 | The Controllable axis is 3 axes, the 1st axis is 1000 pls, the 2nd axis is 2000 pls, and the 3rd axis is 1000 pls. |
| ?:A | 1000,2000 | When the memory switch "GENERAL"-"AXIS" is " $1+2$ ", the 1st axis is 1000 pls and the 2nd axis is 2000 pls. |
| ?:A1 | 1000 | The 1st axis is 1000 pls |
| ?:AA | 1000,2000 | 1st axis is 1000 pls, 2nd axis is 2000 pls |
| ?:A1,M | 0.01 | The 1st axis is 0.01 mm |
| ?:A | NS,NS | Not set when the controllable axes are 1 axis and 2 axes |
| ?:A | NS,NS,NS | Not set when the controllable axes are 1, 2, and 3 axes. |
| ?:A1 | NS | Not set |
| ?:AA | NS,NS | Not set |

21) ?:AP command (Get setting 14 : Absolute movement [Prebuffer ])

- Description

Get the destination coordinate value set in "AP: Command".

- Command format

Send) ?:APa,u
Reply) m

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and $2 n d$ axis designation
B 1st axis and 3rd axis designation
C 2nd and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
$u$ : Unit setting
P Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation
No designation Designation without unit (pulse)
Reply) m: Movement amount (Unit: pls)

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| ?:AP | $1000,2000,3000$ | The controllable axis is 3 axes, the 1st axis is 1000pls, <br> the 2nd axis is 2000pls, and the 3rd axis is 1000pls. |
| ?:AP | 1000,2000 | When the memory switch "GENERAL"-"AXIS" is "1 + 2", <br> the 1st axis is 1000pls and the 2nd axis is 2000pls. |
| ?:AP1 | 1000 | The 1st axis is 1000pls |
| ?:APA | 1000,2000 | 1st axis is 1000pls, 2nd axis is 2000pls |
| ?:AP1,M | 0.01 | The 1st axis is 0.01mm |
| ?:AP | NS,NS | Not set when the controllable axes are 1 axis and 2 axes |
| ?:AP | NS,NS,NS | Not set when the controllable axes are 1, 2, and 3 axes. |
| ?:AP1 | NS | Not set |
| ?:APA | NS,NS | Not set |

22) ?:E command (Get setting 15 : Arc interpolation [Execution buffer])

- Description

Get the arc interpolation setting value set by "E: Command". If it is not set, "NS" will be replied.

- Command format

Send) ?:E,u
Reply) m

- Parameters

Send) u : Unit setting
P Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation
No designation Designation without unit (pulse)

Reply) m:Arc interpolation setting value (Unit: pls)

- Example

| Send | Reply | command |
| :--- | :--- | :--- |
| ?: E | $0, \mathrm{~A}, 0,100,100$ | Perfect circle |
| ?:E | $1, \mathrm{~A}, 0,100,100,170$ | angle |
| ?:E | $2, \mathrm{~A}, 0,100,100,200,0$ | Passing point |
| ?:E | $3, \mathrm{~A}, 0,1,100,100,300$ | Perfect circle helical |
| ?: E | $4, \mathrm{~A}, 0,100,100,170,300$ | Angle helical |
| ?:E | $5, \mathrm{~A}, 0,100,100,200,0,300$ | Passing point helical |
| ?:E,M | $0, \mathrm{~A}, 0,0.0001,0.0001$ | Specify mm as a perfect circle |
| ?:E | NS | Not set |

*) The first letter of the reply is the * of the "E: *" command. Please refer to the "E: *" command for the details of the reply contents.
23) ?:EP command (Get setting 16 : Arc interpolation [Prebuffer])

- Description

Get the Arc interpolation setting value set in "EP: Command". If it is not set, "NS" will be replied.

- Command format

Send) ?:EP,u
Reply) m

- Parameters

Send) u: Unit setting
P Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation
No designation Designation without unit (pulse)
Reply) m:Arc interpolation setting value(Unit: pls)

- Example

| Send | Reply | command |
| :--- | :--- | :--- |
| ?:EP | $0, A, 0,100,100$ | Perfect circle |
| ?:EP | $1, A, 0,100,100,170$ | angle |
| ?:EP | $2, A, 0,100,100,200,0$ | Passing point |
| ?:EP | $3, A, 0,1,100,100,300$ | Perfect circle helical |
| ?:EP | $4, A, 0,100,100,170,300$ | Angle helical |
| ?:EP | $5, A, 0,100,100,200,0,300$ | Passing point helical |
| ?:EP,M | $0, A, 0,0.0001,0.0001$ | Specify mm as a perfect circle |
| ?:EP | NS | Not set |

*) The first letter of the reply is the * of the "EP: *" command. Please refer to the "EP: *" command for the details of the reply contents.
24) ?:K command (Get setting 17 : Linear interpolation [Execution buffer])

- Description

Get the linear interpolation setting value set by "K: command". If it is not set, "NS" will be replied.

- Command format

Send) ?:K,u
Reply) m

- Parameters

Send) u : Unit setting
P Designation without unit (pulse)
N nanometer designation
$\cup$ micrometer designation
M mm designation
D degree designation
No designation Designation without unit (pulse)
Reply) m: Line interpolation setting value(Unit: pls)

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| ?:K | D,1000,2000,3000 | The controllable axis is 3 axes, the 1st axis is 1000pls, the <br> 2nd axis is 2000pls, and the 3rd axis is 3000pls. |
| $?: \mathrm{K}$ | A,1000,2000 | When the memory switch "GENERAL"-"AXIS" is "1 + 2", <br> the 1st axis is 1000pls and the 2nd axis is 2000pls. |
| $?: \mathrm{K}, \mathrm{M}$ | D,0.01,0.02,0.03 | The Controllable axis is 3 axes, the 1st axis is 0.01 mm, <br> the 2nd axis is 0.02 mm , and the 3rd axis is 0.03 mm. |
| $?: \mathrm{K}$ | NS | Not set |

25) ?:KP command (Get setting 18 : Linear interpolation [Prebuffer])

- Description

Get the linear interpolation setting value set by "KP: command". If it is not set, "NS" will be replied.

- Command format

Send) ?:KP,u
Reply) m

- Parameters

Send) u : Unit setting
P Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation
No designation Designation without unit (pulse)
Reply) m:Line interpolation setting value(Unit: pls)

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| ?:KP | D,1000,2000,3000 | The controllable axis is 3 axes, the 1st axis is 1000pls, <br> the 2nd axis is 2000pls, and the 3rd axis is 3000pls. |
| ?:KP | A,1000,2000 | When the memory switch "GENERAL"-"AXIS" is "1 + <br> 2", the 1st axis is 1000pls and the 2nd axis is 2000pls. |
| ?:KP,M | D,0.01,0.02,0.03 | The Controllable axis is 3 axes, the 1st axis is 0.01 mm, <br> the 2nd axis is 0.02 mm , and the 3rd axis is 0.03 mm. |
| ?:KP | NS | Not set |

26) ?:O command (Get setting 19 : General-purpose output status)

- Description

Get the general-purpose output status.

- Command format

Send) ?:O
Reply) o

- Parameters

Reply) 0 : General-purpose output status $0 \sim 63$

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| ?:O | 15 | OUT1 $\sim 4:$ ON OUT5,6: OFF |

*) ON means that current is flowing through the transistor of the photocoupler.
For details, refer to the separate volume " Preparation and Operation ".
27) ?:W command (Get setting 20 : Wait time)

- Description

Get the wait time setting value.

- Command format

Send) ?:W
Reply) w

- Parameters

Reply) w: Wait time setting value $0 \sim 2550$ (Unit : 0.1 s )

- Example

| Send | Reply |  |
| ---: | :--- | :--- |
| ?:W | 255 | 25.5 ms |

28) ?:WT command (Get setting 21 : Wait time)

- Description

Get the wait time setting value for each axis.

- Command format

Send) ?:WTa
Reply) w

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
Reply) w: Wait time setting value 0 ~ 2550(Unit : 0.1s)

- Example 1

| Send | Reply |  |
| :--- | :--- | :--- |
| $?:$ WT | $255,255,255$ | All axis setting value $(25.5 \mathrm{~ms})$ |
| $?:$ WT1 | 255 | 1 -axis setting value $(25.5 \mathrm{~ms})$ |

- Example 2

| Send | Reply | Contents |
| :--- | :--- | :--- |
| ?:WTA | 255,255 | 1st and 2nd axis set values (25.5ms) |
| ?:WT | NS,NS | Not set when the controllable axes are 1 axis and 2 axes |
| ?:WT | NS,NS,NS | Not set when the controllable axes are 1, 2, and 3 axes. |
| ?:WT1 | NS | Not set |
| ?:WTA | NS,NS | Not set |

29) ?:WI command (Get setting 22 : General-purpose input wait)

- Description

Get the settings for waiting for general-purpose input.

- Command format

Send) ?:Wla
Reply) i

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
Reply) i : general-purpose input $0 \sim 63$

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| $?: \mathrm{WI}$ | $63,63,63$ | All axis setting values (N1 to 6 are all ON) |
| ?:WI1 | 63 | 1st axis set value (N1 to 6 are all ON) |
| ?:WIA | 63,63 | 1st and 2nd axis set values (N1 to 6 are all ON) |
| ?:WI | NS,NS | Not set when the controllable axes are 1 axis and 2 axes |
| ?:WI | NS,NS,NS | Not set when the controllable axes are 1, 2, and 3 axes. |
| $?: W I 1$ | NS | Not set |
| ?:WIA | NS,NS | Not set |

*) ON means that current is flowing through the transistor of the photocoupler.
For details, refer to the separate volume " Preparation and Operation ".
30) ?:N command (Get setting 23 : Model name)

- Description

Get the model name of this controller.

- Command format

Send) ?:N
Reply) n

- Parameters

Reply) n: model name

- Example

| Send | Reply |
| :--- | :--- |
| ?:N | SHRC-203 |

31) ?:J command (Get setting 24 : Jog motion direction)

- Description

Get the operation direction setting set by "J: command". If it is not set, "NS" will be replied.

- Command format

Send) ?:Ja
Reply) j

- Parameters

Send) a: Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
Reply) j: Operating direction setting value + or -

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| $?: \mathrm{J}$ | ,,+-+ | The Controllable axis is 3 axes, the 1st axis is in the + direction, <br> the 2nd axis is in the - direction, and the 3rd axis is in the + <br> direction. |
| $?: \mathrm{J}$ | ,+- | When the memory switch "GENERAL"-"AXIS" is "1 + 2", the 1st <br> axis is in the + direction and the 2nd axis is in the - direction. |
| $?: \mathrm{J1}$ | + | The 1st axis is in the + direction |
| $?: \mathrm{JA}$ | ,+- | 1st axis is + direction, 2nd axis is - direction |
| $?: \mathrm{J}$ | NS,NS | Not set when the controllable axes are 1 axis and 2 axes |
| $?: \mathrm{J}$ | NS,NS,NS | Not set when the controllable axes are 1, 2, and 3 axes. |
| $?: \mathrm{J1}$ | NS | Not set |
| $?: \mathrm{JA}$ | NS,NS | Not set |

32) ?:ACS command (Get setting 25 : Auto-config status)

- Description

Get the current autoconfig status.

- Command format

Send) ?:ACSa
Reply) j

| - Parameters |  |  |
| :---: | :---: | :---: |
| Send) | a : Axis setting |  |
|  | 1 | st axis designation |
|  | 2 | nd axis designation |
|  | 3 | d axis designation |
|  | A | st axis and 2nd axis designation |
|  | B | st axis and 3rd axis designation |
|  | C | nd axis and 3rd axis designation |
|  | D | st axis, 2nd axis and 3rd axis designation |
|  | W | Specify all controllable axes |
|  |  | pecified Specify all controllable axes |
| Reply) | j : Autoconfig status |  |
|  | 0 Memory switch "CONFIG" is OFF |  |
|  | 1 Memory switch "CONFIG" is ON, and normal reading is completed |  |
|  | E Memory switch "CONFIG" is ON, and read error |  |
|  | D Memory switch "CONFIG" is ON, and device unconnected error |  |
| - Example |  |  |
| Send | Reply | Contents |
| ?:ACS | 1,0,1 | Memory switch CONFIG1 / CONFIG3 is ON, CONFIG2 is OFF, and it is read normally. |
| ?:ACS1 | 1 | When the memory switch CONFIG1 is ON and it is read normally |
| ?:ACSA | 1,E | memory switch CONFIG1 / CONFIG2 is ON and the device is connected to the 2nd axis and cannot be read. |
| ?:ACSW | 1,1,D | When the memory switch CONFIG1 / CONFIG2 / CONFIG3 is ON and the device on the 3rd axis cannot be confirmed. |

33) ?:C command (Get setting 26 : Motor excitation state)

- Description

Get the current motor excitation state.

- Command format

Send) ?:Ca
Reply) j

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
Reply) j: Excitation of the motor
0 Excitation OFF
1 Excitation ON

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| ?:C | $1,0,1$ | Motor excitation is on the 1st and 3rd axes ON state, 2nd axis is OFF |
| $?: C 1$ | 1 | Motor excitation is on the 1st axis ON state |
| $?: C A$ | 1,0 | Motor excitation is ON for the 1st axis and OF F for the 2nd axis |
| $?: C W$ | $1,0,0$ | the motor excitation is ON for the 1st axis, OFF for the 2nd axis, and <br> OFF for the 3rd axis |

34) ?:F command (Get setting 27 : Stage control status)

- Description

Get the current stage control state.

- Command format

Send) ?:Fa
Reply) j

- Parameters

Send) a: Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and $2 n d$ axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
Reply) j: Stage control state
0 Close loop control state
1 Open loop control state

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| ?:F | $0,1,0$ | The 1st and 3rd axes are in the closed loop control state, and the 2nd <br> axis is in the open loop control state. |
| ?:F1 | 0 | The 1st axis is in the closed loop control state. |
| ?:FA | 0,1 | The 1st axis is in the closed loop control state, and the 2nd axis is in <br> the open loop control state. |
| ?:FW | $0,1,1$ | The 1st axis is in the closed loop control state, and the 2nd and 3rd <br> axes are in the open loop control state. |

35) ?:SLEEP command (Get setting 28 : Sleep state)

- Description

Get the sleep state.

- Command format

Send) ?:SLEEP
Reply) $s$

- Parameters

Reply) s: Sleep state 0 or 1
0 Wake from sleep
1 Sleeping

- Example

| Send | Reply |
| :--- | :--- |
| ?:SLEEP | 0 |

36) ?:BO command (Get setting 29 : The lighting status of the display)

- Description

Get the lighting status of the backlight and LED of the display part.

- Command format

Send) ?:BO
Reply) I

- Parameters

Reply) I : Lights on and off 0 or 1
0 Off
1 Lights on

- Example

| Send |  |
| :--- | :--- |
| ?:BO | 0 |

37) ?:MODE command (Get setting 30 : Mode)

- Description

Gets the current mode. The reply "HOST, PROGRAM" will be sent when the program mode is entered by the "P: R" command. "HOST, MS" will be returned when you switch to the memory switch edit mode with "MS: ON".
*) Can be used in all operation modes (HOST, MANUAL, REMOTE, TEACH, EDIT, TEST).

- Command format

Send) ?:MODE
Reply) m

- Parameters

Reply) m: Mode

| HOST | HOST mode |
| :--- | :--- |
| HOST,PROGRAM | Program mode (in HOST mode) |
| HOST,MS | Memory switch edit mode (in HOST mode) |
| MANUAL | MANUAL mode |
| REMOTE | REMOTE mode |
| TEACHING | TEACHING mode |
| EDIT | EDIT mode |
| TEST | TEST mode |
| Send |  |

38) ?:FMT command (Get setting 31 : Command format)

- Description

Get the current command format mode.

- Command format

Send) ?:FMT
Reply) f

- Parameters

Reply) f: Setting
SHOT_FC SHOT_FC mode
HIT HIT mode

- Example

| ? Send | Reply |
| :--- | :--- |
| ?FMT | HIT |

39) ?:BEEP command (Get setting 32 : Beep sound setting status)

- Description

Get the beep sound setting status.

- Command format

Send) ?:BEEP
Reply) b

- Parameters

Reply) b: Beep state 0 or 1
0 Beep OFF
1 Beep ON

- Example

| Send | Reply |
| :--- | :--- |
| BEEP? | 0 |

40) ?:CMD command (Get setting 33 : Previous sendcommand)

- Description

Get the command sent to the controller before sending this command.
*) Can be used in all operation modes (HOST, MANUAL, REMOTE, TEACH, EDIT, TEST).

- Command format

Send) ?:CMD
Reply) c

- Parameters

Reply) c: Command sent before

- Example

| Send | Reply |
| :--- | :--- |
| ?:CMD | WI:W,C |

41) ?:L command (Get setting 34 : The program execution status)

- Description

Get the program execution status.

- Command format

Send) ?:L
Reply) pn,pr,pl,lc1, lc2, lc3, lc4, lc5, lc6, lc7, lc8, lc9,

- Parameters

Reply) pn: Program number $1 \sim 8$
pr : Program execution status $0 \sim 8$
0 Not executed
1 During execution
2 During PAUSE
3 During execution (one line)
4 Stop while processing (when controllable axis and program axis selection are different)
5 Stop while processing (If an error occurs)
6 Stop while processing (When an unexpected pattern is selected)
7 Stop while processing (When the motor excitation is OFF for the program-selected axis)
8 Stop while processing (When the program selection axis is BUSY)
pl : Program execution line number $\quad 1 \sim 4000$
lc1 : Nest 1 Loop number $0 \sim 65535$
Ic2 : Nest 2 Loop number $0 \sim 65535$
Ic3 : Nest 3 Loop number $0 \sim 65535$
Ic4 : Nest 4 Loop number $0 \sim 65535$
Ic5 : Nest 5 Loop number $0 \sim 65535$
Ic6 : Nest 6 Loop number $0 \sim 65535$
lc7 : Nest 7 Loop number $0 \sim 65535$
Ic8 : Nest 8 Loop number $0 \sim 65535$
Ic9 : Nest 9 Loop number $0 \sim 65535$

- Example

Program number 1 is executing on the 15th line, and the remaining number of all loops is 0 .

| Send | Reply |
| :--- | :--- |
| ?:L | $1,1,15,0,0,0,0,0,0,0,0,0$ |

42) ?:T command (Get setting 35 : Trigger execution status)

- Description

Get the trigger execution status. If it is not set, "NS" will be replied.

- Command format

Send) ?:T
Reply1) m,a,v
Reply2) m,v
*) If the trigger execution content is PULSE, SCALE PLUS, SCALE MINUS, Reply 1), and if TIMER, Reply 2).

- Parameters

Reply) $m$ : Trigger execution contents $0 \sim 3$
0 PULSE(Drive pulse)
1 TIMER(Interval time)
2 SCALE PLUS(+ Directional scale pulse)
3 SCALE MINUS(- Directional scale pulse)
a: Axis setting $1 \sim 3$

43) ?:SN command (Get setting 36: Serial number)

- Description

Get the serial number.

- Command format

Send) ?:SN
Reply) sn

- Parameters

Reply) sn: Serial number

- Example

| Send | Reply |
| :--- | :--- |
| ?:SN | 2106001001 |

44) ?:AXIS command (Get setting 37: Controllable axis)

- Description

Acquires the setting information of the controllable axis (memory switch "GENERAL""AXIS").

- Command format

Send) ?:AXIS
Reply) a

- Parameters

Reply) a: 0 Valid only for the 1st axis
1 Valid only for the 2nd axis
2 Valid only for the 3rd axis
3 1st and 2nd axis valid
$4 \quad$ 1st and 3rd axis valid
5 2nd and 3rd axis valid
6 1st, 2nd and 3rd axis valid

- Example

| Send | Reply | Contents |
| :---: | :---: | :---: |
| ?:AXIS | 6 | 1st, 2nd and 3rd axis valid |

45) PSET: command (Coordinate value preset)

- Description

Preset the coordinate values.

- Command format

Send) PSET:amuc

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and $2 n d$ axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
m : Sign + or - (If there is no sign, it will be "+")
u : Unit setting $\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D} / \mathrm{P}$
N nanometer designation
U micrometer designation
M mm designation
D degree designation
P Designation without unit (pulse)
c: Set coordinate values Setting range : 0 ~ 999,999,999 (Unit: pls)

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| PSET:1+P1000 | OK or NG | 1st axis to 1000 pls |
| PSET:A+P1000+P2000 | OK or NG | 1st axis to 1000pls and the 2nd axis to 2000pls |
| PSET:B+P1000+P3000 | OK or NG | 1st axis to 1000pls and the 3rd axis to 3000pls |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
46) RESET: command (Reset execution)

- Description

Reboot the system.

- Command format

Send) RESET:

- Example

| Send |  |
| :--- | :--- |
| RESET: | OK or NG |

47) SLEEP: command (Sleep execution)

- Description

Change the sleep state.

- Command format

Send) SLEEP:s

- Parameters

Send) $\mathrm{s}:$ Sleep state 0 or 1
0 Wake from sleep
1 Go to sleep state

- Example

| Send |  |
| :--- | :--- |
| SLEEP:1 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
*) If the position shifts during sleep with the CLOSE setting, it will return to the position before sleep when returning from the sleep state.
48) BO: command (Display lighting operation)

- Description

Change the lighting status of the backlight and LED of the display.

- Command format

Send) BO:I

- Parameters

Send) I : Lights on and off 0 or 1
0 Off
1 Lights on

- Example

| Send | Reply |
| :--- | :--- |
| BO:1 OK or NG |  |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
49) MODE: command (Mode change)

- Description

Change the mode.
*) Can be used in all operation modes (HOST, MANUAL, REMOTE, TEACH, EDIT, TEST).

- Command format

Send) MODE:m

- Parameters

Send) m:Mode

| HOST | HOST mode |
| :--- | :--- |
| MANUAL | MANUAL mode |

REMOTE REMOTE mode

TEACHING TEACHING mode
EDIT EDIT mode
LOAD LOAD mode
TEST TEST mode

- Example

| Send | Reply |
| :--- | :--- |
| MODE:MANUAL | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
50) FMT: command (Command format change)

- Description

Change the command format.

- Command format

Send) FMT:f

- Parameters

Send) f: Setting
SHOT_FC SHOT_FC mode
HIT HIT mode

- Example

| Send |  |
| :--- | :--- |
| FMT:HIT | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
51) F: command (Stage control method change)

- Description

Change the stage control method.

- Command format

Send) F:af

- Parameters

Send) a: Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and $2 n d$ axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
$f$ : Control method 0 or 1
0 Close loop control
1 Open loop control

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| F:10 | OK or NG | Set the 1st axis to closed loop control. |
| F:AO | OK or NG | Set the 1st and 2nd axes to closed loop. |
| F:W0 | OK or NG | Set all controllable axes to closed loop. |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
52) C: command (Motor state change)

- Description

Change the motor status.

- Command format

Send) C:ac

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
c : Motor status $\quad 0$ or 1
0 Excitation OFF
1 Excitation ON

- Example

| Send | Reply |
| :--- | :--- |
| C:10 | OK or NG |
| C:A0 | OK or NG |
| C:W0 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
53) BEC: command (Positioning incomplete and error cancellation)

- Description

Releases positioning incomplete state (BUSY) and error.
*) Can be canceled: Limit error / Overflow error / Emergency stop

- Command format

Send) BEC:a

- Parameters

Send) a: Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and $2 n d$ axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes

- Example

| Send |  |
| :--- | :--- |
| BEC:1 | OK or NG Reply |
| BEC:A | OK or NG |
| BEC:W | OK or NG |

54) BEEP: command (Beep operation)

- Description

Select whether to make a beep sound.

- Command format

Send) BEEP:b

- Parameters

Send) b: Beep state 0 or 1
0 Beep OFF
1 Beep ON

- Example

| Send | Reply |
| :--- | :--- |
| BEEP:0 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
55) S: command (Number of divisions setting)

- Description

Set the number of divisions of the motor driver.
*) When the power is turned on, the value of the memory switch "MOTOR DRIVER"-"DIVIDE" is set.
*) If the memory switch "AXIS"-"CONFIG" is ON, this command is invalid.

- Command format

Send) $\mathrm{S}: \mathrm{a}, \mathrm{m}$

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2 nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
m : Number of motor driver divisions
$1,2,3,4,5,6,8,10,12,20,25,30,40,50,60,80,100$, $120,125,200,250,300,400,600,800,1000,2000,4000,8000$
*) If the number of divisions is other than the above, a command error will occur.

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| $\mathrm{S}: 1,100$ | OK or NG | 1st axis is divided into 100 |
| $\mathrm{S}: \mathrm{A}, 100,200$ | OK or NG | 1st axis is divided into 100, 2nd axis is divided into <br> 200 |
| $\mathrm{~S}: \mathrm{B}, 100,400$ | OK or NG | 1st axis is divided into 100, 3rd axis is divided into <br> 400 |
| $\mathrm{~S}: \mathrm{W}, 200,200,400$ | OK or NG | The 1st axis is divided into 200, the 2nd axis is <br> divided into 200, and the 3rd axis is divided into 400. |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
56) W: command (Waiting time)

- Description

Set the waiting time until READY is reached after determining that positioning is complete.

- Command format

Send) W:w

- Parameters

Send) w: Waiting time $0 \sim 2550 \quad$ (Unit : 0.1s)

- Example

| Send | Reply |
| :--- | :--- |
| W:255 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
57) WT: command (Wait for specified time [Prebuffer] )

- Description

This is a prebuffer command that waits for a specified time. If a waiting time is set in "W: command", the waiting process of this command will start after the waiting time has elapsed.
If " 0 " is specified, the running timer operation is stopped.
${ }^{*}$ ) This command can be used only when the double buffer function is enabled.
For details, refer to "2. About double buffer".

- Command format

Send) WT:a,w

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
w : Waiting time $0 \sim 2550$ (Unit : 0.1s)

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| WT:1,1 | OK or NG | 0.1 sec for the first axis |
| WT:A,10,20 | OK or NG | 1 sec for 1st axis, 2 sec for 1st axis |
| WT:W,2550,2550,2550 | OK or NG | 255 sec for all Controllable axes |
| WT:W,0 | OK or NG | 0 sec for all Controllable axes |

58) WI: command (General purpose input state wait [Prebuffer])

- Description

This is a prebuffer command that waits until the specified general-purpose input is set.
${ }^{*}$ ) This command can be used only when the double buffer function is enabled.
For details, refer to "2. About double buffer".

- Command format

Send) WI:a,i

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
i: General purpose input $0 \sim 63$ or $C$
$0 \sim 63$
$\quad$ C $\quad$ Cancel waiting

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| WI:1,1 | OK or NG | 1st axis designation (IN1: ON IN2 ~ 6: OFF) |
| WI:A,1,2 | OK or NG | 1st axis and 2nd axis designation <br> (1st axis IN1: ON IN2 ~ 6: OFF) <br> (2nd axis IN2: ON IN1,3 ~ 6: OFF) |
| WI:W,63,63,63 | OK or NG | Controllable axis all axis designation <br> (Controllable axis all axis IN1 ~ 6: ON) |
| WI:W,C | OK or NG | Designation of all controllable axes (release of <br> standby for all Controllable axes) |

*) ON means that current is flowing through the transistor of the photocoupler.
For details, refer to the separate volume " Preparation and Operation ".
59) H: command (Mechanical origin return 1)

- Description

Performs mechanical origin return. After completion, the coordinate values will be reset to zero. The operating speed follows the setting of the " $\mathrm{B}:$ : command.

- Command format

Send) Hm:a

- Parameters

Send) m: Origin return method specification 0 or 1 or 2 or 3 or 4 or Not specified
0 MARK
1 MINI
2 MIDDLE
3 ORGS
4 NORMAL
Not specified Follows memory switch setting
a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes

- Example1

| Send | Reply | Contents |
| :--- | :--- | :--- |
| $H: 1$ | OK or NG | 1st axis designation |
| H:A | OK or NG | 1st axis and 2nd axis designation |
| H:B | OK or NG | 1st axis and 3rd axis designation |
| H:W | OK or NG | Specify all controllable axes |
| H: | OK or NG | Specify all controllable axes |

[^2]60) HRT: command (Mechanical origin return 2 : Completion reply)

- Description

The mechanical origin is restored, and there is a reply for each axis after completion. After completion, the coordinate values will be reset to zero. The operating speed follows the setting of the "B:" command.

- Command format

Send) HRTm:a
Reply) r

- Parameters

Send) m : Origin return method specification0 or 1 or 2 or 3 or 4 or Not specified
0 MARK
1 MINI
2 MIDDLE
3 ORGS
4 NORMAL
Not specified Follows memory switch setting
a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and $2 n d$ axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
Reply) $r$ : Positioning complete axis 1 or 2 or 3

- Example

| Send | Reply | Reply after home return <br> operation is completed | Contents |
| :--- | :--- | :--- | :--- |
| HRT:1 | OK or NG | 1 | 1st axis designation |
| HRT:A | OK or NG | 1 and 2 | 1st axis and 2nd axis designation |
| HRT:B | OK or NG | 1 and 3 | 1st axis and 3rd axis designation |
| HRT:W | OK or NG | 1,2 and 3 | 1st axis, 2nd axis and 3rd axis <br> designation |
| HRT:W | OK or NG | Depends on the <br> Controllable axis | Specify all controllable axes |
| HRT: | OK or NG | Depends on the <br> Controllable axis | Specify all controllable axes |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
61) Z: command (Logical origin return 1)

- Description

Move to the position of the logical origin " 0 ". The operating speed follows the setting of the "D:" command.

- Command format

Send) $\quad Z: a$

- Parameters

Send) a: Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and $2 n d$ axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| Z:1 | OK or NG | 1st axis designation |
| Z:A | OK or NG | 1st axis and 2nd axis designation |
| Z:B | OK or NG | 1st axis and 3rd axis designation |
| Z:W | OK or NG | Specify all controllable axes |
| Z: | OK or NG | Specify all controllable axes |

${ }^{*}$ ) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
62) ZRT: command (Logical origin return 2 : Completion reply)

- Description

Move to the position of the logical origin " 0 ", and there is a reply for each axis after completion. The operating speed follows the setting of the "D:" command.

- Command format

Send) ZRT:a
Reply) r

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and $2 n d$ axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes
Reply) $r$ : Positioning complete axis 1 or 2 or 3

- Example 1

| Send | Reply | Reply after home return <br> operation is completed | Contents |
| :--- | :--- | :--- | :--- |
| ZRT:1 | OK or NG | 1 | 1st axis designation |
| ZRT:A | OK or NG | 1 and 2 | 1st axis and 2nd axis designation |
| ZRT:B | OK or NG | 1 and 3 | 1st axis and 3rd axis designation |
| ZRT:D | OK or NG | 1,2 and 3 | 1st axis, 2nd axis and 3rd axis <br> designation |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.

- Example 2

| Send | Reply | Reply after home return <br> operation is completed |  |
| :--- | :--- | :--- | :--- |
| ZRT:W | OK or NG | Depends on <br> Controllable axis | the |
| ZRT: | OK or NG | Depenty all controllable axes <br> Controllable axis | the |
| Specify all controllable axes |  |  |  |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
63) R: command (Logical origin setting)

- Description

Reset the coordinate value to " 0 ".

- Command format

Send) R:a

- Parameters

Send) a: Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and $2 n d$ axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| R:1 | OK or NG | 1st axis designation |
| R:A | OK or NG | 1st axis and 2nd axis designation |
| R:B | OK or NG | 1st axis and 3rd axis designation |
| R:W | OK or NG | Specify all controllable axes |
| R: | OK or NG | Specify all controllable axes |

${ }^{*}$ ) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
64) RC: command (Initialization of logical origin setting)

- Description

This command cancels the logical origin setting. For example, after setting zero with the "R: command" at the position of coordinate value +1000 , and then moving to the position of coordinate value +500 , executing this command the current coordinate value becomes 1500 .

- Command format

Send) RC:a

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and $2 n d$ axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| RC:1 | OK or NG | 1st axis designation |
| RC:A | OK or NG | 1st axis and 2nd axis designation |
| RC:B | OK or NG | 1st axis and 3rd axis designation |
| RC:W | OK or NG | Specify all controllable axes |
| RC: | OK or NG | Specify all controllable axes |

${ }^{*}$ ) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
65) L: command (Stop operation 1)

- Description

Decelerate and stop the stage.

- Command format

Send) L:a

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| L:1 | OK or NG | 1st axis designation |
| L:A | OK or NG | 1st axis and 2nd axis designation |
| L:B | OK or NG | 1st axis and 3rd axis designation |
| L:W | OK or NG | Specify all controllable axes |
| L: | OK or NG | Specify all controllable axes |

*) In the case of the motor excitation is OFF, it will be "NG" and this command cannot be executed.
66) L:E command (Stop operation 2 : Emergency stop)

- Description

Immediately stop the stages of all axes and put them in an emergency stop state.
The excitation of the motor in case of emergency stop depends on the memory switch "AXIS"-"EMG MT EXCT *".
To cancel, send the "BEC:" command.

- Command format

Send) L:E

- Example

| Send | Reply |
| :--- | :--- |
| L:E | OK or NG |

67) M: command (Relative movement amount setting 1 : [Execution buffer])

- Description
command sets the movement axis, movement direction, and relative movement amount. The operation start command "G" or "G:" is always required after executing this command. Operation is acceleration / deceleration drive.
The operating speed follows the setting of the "D:" command.
- Command format

Send) M:amuy

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
m : Sign + or -
u : Unit setting
P Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation

## y : Moving distance

P Setting range: 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value converted from pls to nm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be N 1000
U Setting range : Value converted from pls to $\mu \mathrm{m}$
Example): If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be U1
M Setting range : Value converted from pls to mm
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be M0.001
D Setting range: Value converted from pls to angle
Example):
If the scale resolution is $0.000001^{\circ}$ at 1,000 pls, it will be D0.001

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| M:1+P1000 | OK or NG | 1000 pulse movement setting in the 1st axis <br> + direction. |
| M:A+P1000+P2000 | OK or NG | 1000 pulse movement setting in the 1st axis <br> + direction, 2000 pulse movement setting in <br> the 2nd axis + direction. |
| M:B+P1000+P3000 | OK or NG | 1000 pulse movement setting in the 1st axis <br> +direction, 2000 pulse movement setting in <br> the 3rd axis + direction. |
| M:W+P1000+P2000+P3000 | OK or NG | 1st axis + direction 1000 pulse, 2nd axis + <br> direction 2000 pulse, 3rd axis + direction <br> 3000 pulse movement setting. |
| M:W+U10+N5+M50 | OK or NG | 1st axis + direction 10رm, 2nd axis + <br> direction 5nm, 3rd axis + direction 50mm <br> movement setting. |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
68) MP: command (Relative movement amount setting 2 : [Prebuffer] )

- Description

This is a prebuffer command that sets the movement axis, movement direction, relative movement amount, and movement speed. If the operation is set up with this command, a reply will be sent when the operation is completed.
The operation start command "G" or "G:" is always required after executing this command. Operation is acceleration / deceleration drive. If the operation speed setting is omitted, the setting of the " $\mathrm{D}:$ : command is followed.
*) When setting the operation speed, it will be overwritten with the speed setting set by the "D:" command when the operation is started by the "G" command etc. after sending the "MP:" command.
*) This command can be used with the double buffer function. For details, refer to "2. About double buffer".

- Command format

Send) MP:amuy,SspdsFspdfRr

```
Parameters
    Send) a : Axis setting
    1 1st axis designation
    2 2nd axis designation
    3 3rd axis designation
    A 1st axis and 2nd axis designation
    B 1st axis and 3rd axis designation
    C 2nd axis and 3rd axis designation
    D 1st axis, 2nd axis and 3rd axis designation
    W Specify all controllable axes
m : Sign + or -
u : Unit setting
P Designation without unit
    (movement amount pls and operating speed pls/s)
N nanometer designation
    (Movement amount nm and operating speed \(\mathrm{nm} / \mathrm{s}\) )
U micrometer designation
(Movement amount \(\mu \mathrm{m}\) and operating speed \(\mu \mathrm{m} / \mathrm{s}\) )
M mm designation
    (Movement amount mm and operating speed \(\mathrm{mm} / \mathrm{s}\) )
D Degree designation
(Movement amount \({ }^{\circ}\) (degree) and operating speed \({ }^{\circ}\) (degree)/s)
y : Moving distance
    P Setting range : 0 ~ 999,999,999 (Unit: pls)
    N Setting range : Value converted from pls to nm
        Example):
        If the scale resolution is 1 nm at \(1,000 \mathrm{pls}\), it will be N 1000 .
    U Setting range : Value converted from pls to \(\mu \mathrm{m}\)
        Example): If the scale resolution is 1 nm at \(1,000 \mathrm{pls}\), it will be U1
    M Setting range : Value converted from pls to mm
        Example):
        If the scale resolution is 1 nm at \(1,000 \mathrm{pls}\), it will be M 0.001 )
    D Setting range: Value converted from pls to angle
        Example):
        If the scale resolution is \(0.000001^{\circ}\) at 1,000 pls, it will be D0.001)
        spds : Minimum speed (S) setting Setting range : 1~1,000,000 pls/s
spdf : Maximum speed (F) setting Setting range : 1~1,000,000 pls/s
                            \(\left.{ }^{*}\right)\) Please set it to the minimum speed \((\mathrm{S})\) or higher.
\(r\) : Acceleration / deceleration time (R) setting
Setting range : 1~1,000 ms
```

- Example

| Send | Reply | Contents |
| :---: | :---: | :---: |
| MP:1+P1000 | $\begin{aligned} & \text { OK or OK_D } \\ & \text { or NG } \end{aligned}$ | 1000 pulse movement setting in the 1st axis + direction, the operating speed is the setting value with the memory switch "SPEED" or the setting value with the already set "D:" command. |
| $\begin{aligned} & \hline \text { MP:1+P1000, } \\ & \text { S100F1000R50 } \end{aligned}$ | $\begin{aligned} & \text { OK or OK_D } \\ & \text { or NG } \end{aligned}$ | 1000 pulse movement setting in the 1st axis + direction, the operating speed is minimum speed (S) 100pls / s, maximum speed (F) 1000pls / s, acceleration / deceleration time (R) 50 ms . |
| MP:A+P1000+P2000, S100F1000R50 S200F2000R100 | $\begin{aligned} & \text { OK or OK_D } \\ & \text { or NG } \end{aligned}$ | - 1000 pulse movement setting in the 1 st axis + direction, the operating speed is minimum speed (S) 100pls / s, maximum speed (F) 1000pls / s, acceleration / deceleration time (R) 50 ms . <br> - 2000 pulse movement setting in the 2nd axis + direction, the operating speed is minimum speed (S) 200pls / s, maximum speed (F) 2000pls / s, acceleration / deceleration time (R) 100 ms . |
| MP:W+U10+N200+M0.03, S100F1000R50 S200F2000R100 S0.03F0.3R150 | OK or OK_D or NG | - $10 \mu \mathrm{~m}$ movement setting in the 1 st axis + direction, the operating speed is minimum speed (S) 100pls / s, maximum speed (F) 1000pls / s, acceleration / deceleration time (R) 50 ms . <br> - 200 nm movement setting in the $2 n d$ axis + direction, the operating speed is minimum speed (S) 200nm / s, maximum speed (F) $2000 \mathrm{~nm} / \mathrm{s}$, acceleration / deceleration time (R) 100 ms . <br> - 0.03 mm movement setting in the 3rd axis + direction, the operating speed is minimum speed $(\mathrm{S}) 0.03 \mathrm{~mm} / \mathrm{s}$, maximum speed (F) $0.3 \mathrm{~mm} / \mathrm{s}$, acceleration / deceleration time (R) 150 ms . |

*) In the case of the motor excitation is OFF, it will be "NG" and this command cannot be executed.
69) A: command (Absolute coordinate value setting 1 : [Execution buffer])

- Description

This command sets the axis of movement, direction of movement, and position of movement. The operation start comman "G" or " G: " is always required after executing this command. Operation is acceleration / deceleration drive. This command also allows the stage to be moved to the logical origin.
The operating speed follows the setting of the "D:" command.

- Command format

Send) A:amuy

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
m : Sign + or -
u : Unit setting
P Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation
y : Moving distance
P Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value converted from pls to nm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be N 1000
U Setting range : Value converted from pls to $\mu \mathrm{m}$ Example): If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be U 1
M Setting range : Value converted from pls to mm
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be M0.001
D Setting range : Value converted from pls to angle
Example):
If the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls}$, it will be D0.001

- Example 1

| Send | Reply | Contents |
| :--- | :--- | :--- |
| A:1+P1000 | OK or NG | Set to move the 1st axis to the +1000 pulse <br> position |
| A:A+P1000+P2000 | OK or NG | Set to move the 1st axis to the +1000 pulse <br> position and the 2nd axis to the +2000 pulse <br> position. |
| A:B+P1000+P3000 | OK or NG | Set to move the 1st axis to the +1000 pulse <br> position and the 3rd axis to the +3000 pulse <br> position. |
| A:W+P1000+P2000+P3000 | OK or NG | Set to move the 1st axis to the +1000 pulse <br> position, the 2nd axis to the +2000 pulse <br> position, and the 3rd axis to the +3000 pulse <br> position. |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.

- Example 2

| Send | Reply | Contents |
| :---: | :---: | :--- |
| A:W+U10+N5+M50 | OK or NG | Set to move the 1st axis to the $+10 \mu \mathrm{~m}$ <br> position, the 2nd axis to the +5 nm position, <br> and the 3rd axis to the +50 mm position. |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
70) AP: command (Absolute coordinate value setting 2 : [Prebuffer])

- Description

This is a prebuffer command that sets the movement axis, movement direction, movement position, and movement speed. If the operation is set up with this command, a reply will be sent when the operation is completed.
The operation start comman "G" or " G: " is always required after executing this command. Operation is acceleration / deceleration drive. If the operation speed setting is omitted, the setting of the " $\mathrm{D}:$ : command is followed.
*) When setting the operation speed, it will be overwritten with the speed setting set by the "D:" command when the operation is started by the "G" command etc. after sending the "AP:" command.
*) This command can be used with the double buffer function.
For details, refer to "2. About double buffer".

- Command format

Send) AP:amuy,SspdsFspdfRr

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2 nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
m : Sign + or u : Unit setting

P Designation without unit (movement amount pls and operating speed pls/s)
N nanometer designation
(Movement amount nm and operating speed $\mathrm{nm} / \mathrm{s}$ )
U micrometer designation
(Movement amount $\mu \mathrm{m}$ and operating speed $\mu \mathrm{m} / \mathrm{s}$ )
M mm designation
(Movement amount mm and operating speed $\mathrm{mm} / \mathrm{s}$ )
D degree designation
(Movement amount ${ }^{\circ}\left(\right.$ degree) and operating speed ${ }^{\circ}$ (degree)/s)
y : Moving distance
P Setting range: 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value converted from pls to nm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be N 1000
$\cup$ Setting range : Value converted from pls to $\mu \mathrm{m}$
Example): If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be U 1
M Setting range : Value converted from pls to mm
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be M0.001
D Setting range : Value converted from pls to angle
Example):
If the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls}$, it will be D0.001 spds : Minimum speed (S) setting Setting range : 1 ~ 1,000,000 pls/s spdf : Maximum speed (F) setting Setting range : 1 ~ 1,000,000 pls/s
*) Please set it to the minimum speed ( S ) or higher. $r$ : Acceleration / deceleration time (R) setting

Setting range : $1 \sim 1,000 \mathrm{~ms}$

- Example 1

| Send | Reply | Contents |
| :---: | :---: | :---: |
| AP:1+P1000 | $\begin{aligned} & \text { OK or OK_D } \\ & \text { or NG } \end{aligned}$ | Set to move the 1st axis to the +1000 pulse position. The movement speed is the value set by the memory switch "SPEED" or by the already set "D:" command. |
| $\begin{aligned} & \text { AP:1+P1000, } \\ & \text { S100F1000R50 } \end{aligned}$ | $\begin{aligned} & \text { OK or OK_D } \\ & \text { or NG } \end{aligned}$ | Set to move the 1st axis to the +1000 pulse position. The moving speed is a minimum speed (S) 100pls / s, a maximum speed (F) 1000pls / s, and an acceleration / deceleration time (R) 50 ms . |
| $\begin{aligned} & \text { AP:A+P1000+P2000, } \\ & \text { S100F1000R50 } \\ & \text { S200F2000R100 } \end{aligned}$ | $\begin{aligned} & \text { OK or OK_D } \\ & \text { or NG } \end{aligned}$ | - Set to move the 1st axis to the +1000 pulse position. <br> The moving speed is a minimum speed $(\mathrm{S})$ 100pls / s, a maximum speed (F) 1000pls / s, and an acceleration / deceleration time (R) 50 ms . <br> - Set to move the 2nd axis to the +2000 pulse position. <br> The moving speed is a minimum speed ( S ) 200pls / s, a maximum speed (F) 2000pls / s, and an acceleration / deceleration time (R) 100 ms . |

[^3]- Example 2

| Send | Reply | Contents |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { AP:W+U10+N200+M } \\ & 0.03, \\ & \text { S100F1000R50 } \\ & \text { S200F2000R100 } \\ & \text { S0.03F3R150 } \end{aligned}$ | $\begin{aligned} & \text { OK or OK_D } \\ & \text { or NG } \end{aligned}$ | - Set to move the 1st axis to the $+10 \mu \mathrm{~m}$ position. The moving speed is $100 \mu \mathrm{~m} / \mathrm{s}$ for the minimum speed (S), $1000 \mu \mathrm{~m} / \mathrm{s}$ for the maximum speed ( F ), and 50 ms for the acceleration / deceleration time (R). <br> - Set to move the 2nd axis to the +200 nm position. The moving speed is $200 \mathrm{~nm} / \mathrm{s}$ for the minimum speed (S), $2000 \mathrm{~nm} / \mathrm{s}$ for the maximum speed ( F ), and 100 ms for the acceleration / deceleration time (R). <br> - Set to move the 3rd axis to the +0.03 mm position. The moving speed is $0.03 \mathrm{~mm} / \mathrm{s}$ for the minimum speed (S), $3 \mathrm{~mm} / \mathrm{s}$ for the maximum speed ( F ), and 150 ms for the acceleration / deceleration time (R). |

*) In the case of the motor excitation is OFF, it will be "NG" and this command cannot be executed.
71) E:0 command (Arc interpolation 1 : Perfect circle [Execution buffer])

- Description

This command sets the axis of movement, direction of rotation, and center coordinates for an arc interpolation move (perfect circle). After executing this command, the operation start comman " G ", " G :" or " G : W " is always required.
*) The interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed for the axis with the smaller axis number.
*) The distance traveled per pulse must be the same between the interpolation axes.
If they are different, the correct interpolation operation will not be performed.

- Command format

Send) E:Oadmuc1muc2

- Parameters

Send) a : Axis setting
A 1st and 2nd axis designation
B 1st and 3rd axis designation
C 2nd and 3rd axis designation
d : Rotation direction setting

## 0 CW ROTATION (CLOCKWISE) <br> 1 CCW ROTATION (COUNTERCLOCKWISE)

m : Sign + or - (If there is no sign, it will be " + ")
u : Unit setting
P Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
c1,c2 : Center coordinate setting (relative position from the current position)
(c1: Set value of the axis with a small axis number (X axis))
(c2: Set value of the axis with a large axis number (Yaxis))
Setting range
P Setting range: 0~999,999,999 (Unit: pls)
N Setting range : Value converted from pls to nm
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be N1000
$U$ Setting range : Value converted from pls to $\square \mathrm{m}$
Example): If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be U 1
$M$ Setting range : Value converted from pls to mm
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be M0.001

## - Example

Operation to draw a circle clockwise from the current position on the 1st and 2nd axis stages to the current position around the relative position from the current position (1st axis 0.05 mm , 2nd axis -0.05 mm )

| Send | Reply |
| :--- | :--- |
| E:OAOM0.05-M0.05 | OK or NG |

*) In the case of Busy, the motor excitation is OFF or the limit sensor is detected, it will be "NG" and this command cannot be executed.

72) $\mathrm{E}: 1$ command (Arc interpolation 2 : Angle [Execution buffer])

## - Description

This command sets the axis of movement, direction of rotation, center coordinates, and end point angle (deg) for a circular interpolation move. After executing this command, the operation start comman "G", "G:" or "G: W" is always required.
*) The interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed for the axis with the smaller axis number.
*) An error occurs because the end point coordinates are calculated. Please use it after confirming it with the actual machine.
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) E:1admuc1muc2Dae

- Parameters

Send) a : Axis setting
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
d : Rotation direction setting
0 CW ROTATION (CLOCKWISE)
1 CCW ROTATION (COUNTERCLOCKWISE)
m : Sign + or - (If there is no sign, it will be " + ")
u : Unit setting
P Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation $\mathrm{c} 1, \mathrm{c} 2$ : Center coordinate setting (relative position from the current position)
(c1: Set value of the axis with a small axis number (X axis))
( c 2 : Set value of the axis with a large axis number ( Y axis))
Center coordinates Setting range
P Setting range : 0~999,999,999 (Unit: pls)
N Setting range : Value converted from pls to nm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be N 1000
U Setting range : Value converted from pls to $\square \mathrm{m}$
Example): If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be U1
M Setting range : Value converted from pls to mm
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be M0.001
ae : End point angle (deg) setting Setting range : $0^{\circ}<$ ae $\leqq 360^{\circ}$

- Example

On the 1st and 3rd axis stages, an arc is drawn in the CW direction from the current position to the end point angle of $90^{\circ}$ around the relative position from the current position (1st axis +100 pls , 3rd axis -200pls).

| Send | Reply |
| :--- | :--- |
| E:1B0+P100-P200D90 | OK or NG |

${ }^{*}$ ) In the case of Busy, the motor excitation is OFF or the limit sensor is detected, it will be "NG" and this command cannot be executed.

73) E:2 command (Arc interpolation 3 : Passing point [Execution buffer])

- Description

This command sets the axis of movement, pass point coordinates, and end point coordinates for a circular interpolation move. After executing this command, the operation start command "G" or "G:" is always required.
*) The interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed for the axis with the smaller axis number.
*) An error occurs because the center coordinates are calculated. Please use it after confirming it with the actual machine.
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) E:2admup1mup2mue1mue2

- Parameters

Send) a : Axis setting
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
d : Rotation direction setting
0 CW ROTATION (CLOCKWISE)
1 CCW ROTATION (COUNTERCLOCKWISE)
m : Sign + or - (If there is no sign, it will be " + ")
u : Unit setting
$P \quad$ Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
p1,p2 : Passing point coordinate setting (relative position from the current position)
(p1: Set value of the axis with a small axis number (X axis))
(p2 : Set value of the axis with a large axis number (Yaxis))
e1,e2 : End point coordinate setting
(relative position from the current position)
(e1: Set value of the axis with a small axis number (X axis))
(e2: Set value of the axis with a large axis number (Y axis))
Passing point coordinates, end point coordinates Setting range
P Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value converted from pls to nm
Example):
If the scale resolution is 1 nm at 1,000 pls, it will be N1000
$U$ Setting range : Value converted from pls to $\mu \mathrm{m}$
Example): If the scale resolution is 1 nm at 1,000 pls, it will be U 1
M Setting range : Value converted from pls to mm
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be M0.001
*) If the current position is on a straight line with Passing point coordinates and end point coordinates, an arc cannot be specified, so "NG" is replied.

## - Example

Arc drawing operation from the current position to the end point coordinates (1st axis +0.08 mm , 2 nd axis +0.12 mm ) via the passing point coordinates (1st axis +0.05 mm , 2 nd axis $2+0.03 \mathrm{~mm}$ ) at the stage of 1 st axis and 2 nd axis.

| Send | Reply |
| :---: | :--- |
| $\mathrm{E}: 2 \mathrm{~A} 0+\mathrm{M} 0.05+\mathrm{M} 0.03+\mathrm{M} 0.08+\mathrm{M} 0.12$ | OK or NG |

*) In the case of Busy, the motor excitation is OFF or the limit sensor is detected, it will be "NG" and this command cannot be executed.

74) E:3 command (Arc interpolation 4 : Perfect circle helical [Execution buffer])

- Description

This command sets the move axis, rotation direction, and center coordinates of an arc interpolation move (perfect circle) and the move destination coordinates of a linear move axis synchronized with an arc interpolation move. After executing this command, the operation start command " G " or " $\mathrm{G}:$ " is always required.
*) The interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed for the axis with the smaller axis number.
*) The distance traveled per pulse must be the same between the interpolation axes.
If they are different, the correct interpolation operation will not be performed.

- Command format

Send) E:3adNnmue1mue2muz

- Parameters

Send) a: Arc axis setting
A 1st axis and 2 nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
d : Rotation direction setting
0 CW ROTATION (CLOCKWISE)
1 CCW ROTATION (COUNTERCLOCKWISE)
n : Number of rotations $1 \sim 1000$
m : Sign $\quad+$ or - (If there is no sign, it will be " + ")
u : Unit setting
P Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
c1,c2 : Center coordinate setting (relative position from the current position)
(c1: Set value of the axis with a small axis number (X axis))
(c2: Set value of the axis with a large axis number (Y axis))
z : Linear movement amount setting (movement amount per rotation from the current position) For example, if the number of rotations is specified as 2 rotations and the linear movement amount setting is 100pls, the total linear movement amount will be 200pls.
${ }^{*}$ ) The axis not set by the arc interpolation axis becomes the linear motion axis. Center coordinates, Linear destination coordinates Setting range
P Setting range : $0 \sim 999,999,999$ (Unit: pls)
N Setting range : Value converted from pls to nm Example):
If the scale resolution is 1 nm at 1,000 pls, it will be N1000
U Setting range : Value converted from pls to $\square \mathrm{m}$
Example): If the scale resolution is 1 nm at 1,000 pls, it will be U1
M Setting range : Value converted from pls to mm
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be M0.001

- Example

At the stage of the 1st and 2nd axes, the operation of drawing a circle clockwise from the current position to the current position centering on the relative coordinates (1st axis Opls, 2nd axis 5000pls). Linear operation with relative coordinates (3rd axis 2000pls) synchronized with this as the destination

| Send | Reply |
| :--- | :--- |
| E:3A0N1+P0+P5000+P2000 | OK or NG |

*) In the case of Busy, the motor excitation is OFF or the limit sensor is detected, it will be "NG" and this command cannot be executed.

75) E:4 command (Arc interpolation 5 : Angle helical [Execution buffer])

- Description

This command sets the move axis, rotation direction, center coordinates, and end point angle (deg) of an arc interpolation move and the move destination coordinates of a linear move axis synchronized with an arc interpolation move. After executing this command, the operation start command "G" or "G:" is always required.
*) The interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed for the axis with the smaller axis number.
*) An error occurs because the end point coordinates are calculated. Please use it after confirming it with the actual machine.
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) E:4admuc1muc2Daemuz

- Parameters

Send) a : Arc axis setting
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
d : Rotation direction setting
0 CW ROTATION (CLOCKWISE)
1 CCW ROTATION (COUNTERCLOCKWISE)
m : Sign + or - (If there is no sign, it will be " + ")
u : Unit setting
P Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
c1,c2 : Center coordinate setting (relative position from the current position)
(c1: Set value of the axis with a small axis number (X axis))
(c2 : Set value of the axis with a large axis number (Yaxis))
z: Linear movement amount setting
(Amount of movement from the current position)
If the angle is less than $360^{\circ}$, the amount of movement until the angle is moved is $360^{\circ}$ or more, the amount of movement per rotation. For example, if the linear movement amount is set to 100pls at $540^{\circ}$ (one and a half rotations), the total linear movement amount will be 150pls.
${ }^{*}$ ) Since the total linear movement amount is calculated, an error will occur. Please use it after confirming it with the actual machine.
P Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value converted from pls to nm Example):
If the scale resolution is 1 nm at 1,000 pls, it will be N 1000
$U$ Setting range : Value converted from pls to $\mu \mathrm{m}$
Example): If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be U 1
M Setting range : Value converted from pls to mm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be M0.001
ae : End point angle (deg) setting Setting range : $0^{\circ}<\mathrm{ae} \leqq 360000^{\circ}$

- Example

On the 1st and 3rd axis stages, an arc is drawn in the CW direction from the current position to the end point angle of $90^{\circ}$ around the relative position from the current position (1st axis Opls, 3rd axis + 100pls). A linear operation with the relative coordinates (2nd axis 50 pls ) synchronized with this as the destination.

| Send | Reply |
| :--- | :--- |
| E:4B0+P0+P100D90+P50 | OK or NG |

*) In the case of Busy, the motor excitation is OFF or the limit sensor is detected, it will be "NG" and this command cannot be executed.

76) E:5 command (Arc interpolation 6 : Passing point helical [Execution buffer])

- Description

This command sets the moving axis, passing point coordinates, and end point coordinates of an arc interpolation move and the destination coordinates of a linear move axis synchronized with an arc interpolation move. After executing this command, the operation start command " $G$ " or " G :" is always required.
*) The interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed for the axis with the smaller axis number.
*) An error occurs because the center coordinates are calculated. Please use it after confirming it with the actual machine.
*) The distance traveled per pulse must be the same between the interpolation axes.
If they are different, the correct interpolation operation will not be performed.

- Command format

Send) E:5admup1mup2mue1mue2muz

- Parameters

Send) a : Arc axis setting
A 1st axis and 2 nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
m : Sign + or - (If there is no sign, it will be " + ")
u : Unit setting
P Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation

${ }^{*}$ ) In the case of Busy, the motor excitation is OFF or the limit sensor is detected, it will be "NG" and this command cannot be executed.

Z-axis(3rd axis)


## 77) EP:0 command (Arc interpolation 1: Perfect circle [Prebuffer])

- Description

This is a prebuffer command that sets the axis of movement, direction of rotation, center coordinates, and movement speed for a circular interpolation move (perfect circle). If the operation is set up with this command, a reply will be sent when the operation is completed. The operation start command "G" or "G:" is always required after executing this command.
${ }^{*}$ ) If the speed is not set with this command, the interpolation operation speed (composite speed) operates at the minimum speed of the " $\mathrm{D}:$ : command setting speed of the axis with the smaller axis number
*) When the speed is set with this command, the speed setting of the axis with the smaller axis number is rewritten, so it is necessary to set all of the minimum speed (S), maximum speed (F), and acceleration / deceleration time (R).
${ }^{*}$ ) This command can be used with the double buffer function.
For details, refer to "2. About double buffer".
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) EP:0admuc1muc2,SspdsFspdfRr

- Parameters

Send) a : Arc axis setting
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
d : Rotation direction setting
0 CW rotation (Clockwise)
1 CCW rotation (Counterclockwise)
$\mathrm{m}:$ Sign + or - (If there is no sign, it will be "+")
u : Unit setting
P Designation without unit (movement amount pls and operating speed pls/s)
N nanometer designation
(Movement amount nm and operating speed $\mathrm{nm} / \mathrm{s}$ )
U micrometer designation (Movement amount $\mu \mathrm{m}$ and operating speed $\mu \mathrm{m} / \mathrm{s}$ )
M mm designation
(Movement amount mm and operating speed $\mathrm{mm} / \mathrm{s}$ )
c1,c2 : Center coordinate setting (relative position from the current position)
(c1: Set value of the axis with a small axis number (X axis))
(c2: Set value of the axis with a large axis number ( Y axis))
Center coordinates Setting range
P Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value converted from pls to nm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be N 1000
U Setting range : Value converted from pls to $\mu \mathrm{m}$ Example): If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be U1
M Setting range : Value converted from pls to mm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be M0.001
spds : Minimum speed ( S ) setting Setting range : 1~1,000,000 pls/s
*) Set only for axes with a small axis number.
spdf : Maximum speed (F) setting Setting range : 1~1,000,000 pls/s
*) Set only for axes with a small axis number.
*) Please set it to the minimum speed (S) or higher.
$r$ : Acceleration / deceleration time ( $R$ ) setting
Setting range : $1 \sim 1,000 \mathrm{~ms}$
*) Set only for axes with a small axis number.
spds : Minimum speed (S) setting
spdf : Maximum speed (F) setting
No unit specified Setting range: 1 to 1,000,000 (unit: pls / s)
Unit specification N Setting range: Value obtained by converting pls / s to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification U Setting range: Value obtained by converting pls $/ \mathrm{s}$ to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification M Setting range: Value obtained by converting pls / s to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification D Setting range: Value obtained by converting pls / sto an angle
(Example: D0.001 when the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$ )
*) Set only for axes with a small axis number.
*) The unit of the axis with the smaller axis number is reflected in the speed setting.
${ }^{*}$ ) The maximum speed should be greater than or equal to the minimum speed.
$r$ : Acceleration / deceleration time setting
Setting range : $1 \sim 1,000 \mathrm{~ms}$
*) Set only for axes with a small axis number.

## - Example

Operation to draw a circle clockwise from the current position on the 1st and 2nd axis stages to the current position around the relative position from the current position (1st axis 0.05 mm , 2 nd axis -0.05 mm ).
Set the minimum speed $(S)$ to $0.5 \mathrm{~mm} / \mathrm{s}$, the maximum speed $(F)$ to $5 \mathrm{~mm} / \mathrm{s}$, and the acceleration / deceleration time (R) to 50 ms .

| Send | Reply |
| :---: | :--- |
| EP:0A0M0.05-M0.05,S0.5F5R50 | OK or OK_D or NG |

*) In the case of the motor excitation is OFF or the limit sensor is detected, it will be "NG" and this command cannot be executed.

78) EP:1 command (Arc interpolation 8 : Angle [Prebuffer])

## - Description

This is a prebuffer command that sets the axis of movement, direction of rotation, center coordinates, end point angle (deg), and move speed for a circular interpolation move. If the operation is set up with this command, a reply will be sent when the operation is completed. The operation start command "G" or "G:" is always required after executing this command.
${ }^{*}$ ) If the speed is not set with this command, the interpolation operation speed (composite speed) operates at the minimum speed of the " $\mathrm{D}:$ : command setting speed of the axis with the smaller axis number.
${ }^{*}$ ) When the speed is set with this command, the speed setting of the axis with the smaller axis number is rewritten, so it is necessary to set all of the minimum speed ( S ), maximum speed ( F ), and acceleration / deceleration time ( R ).
*) This command can be used with the double buffer function.
For details, refer to " 2 . About double buffer".
*) An error occurs because the end point coordinates are calculated. Please use it after confirming it with the actual machine.
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) EP:1admuc1muc2Dae,SspdsFspdfRr

- Parameters

Send) a : Arc axis setting
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation

## d : Rotation direction setting

0 CW rotation (Clockwise)
1 CCW rotation (Counterclockwise)
m : Sign + or - (If there is no sign, it will be " + ")
u : Unit setting
P Designation without unit
(movement amount pls and operating speed pls/s)
N nanometer designation
(Movement amount nm and operating speed $\mathrm{nm} / \mathrm{s}$ )
U micrometer designation
(Movement amount $\mu \mathrm{m}$ and operating speed $\mu \mathrm{m} / \mathrm{s}$ )
M mm designation (Movement amount mm and operating speed $\mathrm{mm} / \mathrm{s}$ )
c1,c2 : Center coordinate setting (relative position from the current position)
(c1: Set value of the axis with a small axis number ( X axis))
(c2 : Set value of the axis with a large axis number ( Y axis))
Center coordinates Setting range
P Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value converted from pls to nm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be N1000
U Setting range : Value converted from pls to $\mu \mathrm{m}$
Example): If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be U 1
M Setting range : Value converted from pls to mm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be M0.001
ae : End point angle (deg) setting Setting range : $0^{\circ}<$ ae $\leqq 360^{\circ}$
spds : Minimum speed (S) setting
spdf : Maximum speed (F) setting
No unit specified Setting range: 1 to 1,000,000 (unit: pls / s)
Unit specification N Setting range: Value obtained by converting pls / s to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification U Setting range: Value obtained by converting pls / s to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification M Setting range: Value obtained by converting pls / s to mm (Example: M0. 001 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification D Setting range: Value obtained by converting pls / s to an angle
(Example: D 0.001 when the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$ )
*) Set only for axes with a small axis number.
*) The unit of the axis with the smaller axis number is reflected in the speed setting.
${ }^{*}$ ) The maximum speed should be greater than or equal to the minimum speed.
$r$ : Acceleration / deceleration time setting
Setting range : $1 \sim 1,000 \mathrm{~ms}$
*) Set only for axes with a small axis number.

## - Example

On the 1st and 3rd axis stages, an arc is drawn in the CW direction from the current position to the end point angle of $90^{\circ}$ around the relative position from the current position (1st axis +100 pls , 3rd axis -200 pls ).
Set the minimum speed (S) to $100 \mathrm{pls} / \mathrm{s}$, the maximum speed $(\mathrm{F})$ to $1000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time (R) to 50 ms .

| Send | Reply |
| :---: | :---: |
| EP:1B0+P100-200D90,S100F1000R50 | OK or OK_D or NG |

*) In the case of the motor excitation is OFF or the limit sensor is detected, it will be "NG" and this command cannot be executed.

79) EP:2 command (Arc interpolation 9 : Passing point indication [Prebuffer])

- Description

This is a pre-buffer command that sets the move axis, passing point coordinates, end point coordinates, and move speed for a circular interpolation move. If the operation is set up with this command, a reply will be sent when the operation is completed.
The operation start command "G" or "G:" is always required after executing this command.
${ }^{*}$ ) If the speed is not set with this command, the interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed of the axis with the smaller axis number.
*) When the speed is set with this command, the speed setting of the axis with the smaller axis number is rewritten, so it is necessary to set all of the minimum speed ( S ), maximum speed ( F ), and acceleration / deceleration time (R).
*) This command can be used with the double buffer function.
For details, refer to "2. About double buffer".
*) An error occurs because the Center coordinates are calculated. Please use it after confirming it with the actual machine.
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) EP:2admup1mup2mue1mue2,SspdsFspdfRr

- Parameters

Send) a : Arc axis setting
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
d : Rotation direction setting
0 CW rotation (Clockwise)
1 CCW rotation (Counterclockwise)
m : Sign + or - (If there is no sign, it will be " + ")
u : Unit setting
P Designation without unit (movement amount pls and operating speed pls/s)
N nanometer designation
(Movement amount nm and operating speed $\mathrm{nm} / \mathrm{s}$ )
U micrometer designation (Movement amount $\mu \mathrm{m}$ and operating speed $\mu \mathrm{m} / \mathrm{s}$ )
M mm designation (Movement amount mm and operating speed $\mathrm{mm} / \mathrm{s}$ )
p1,p2 : Passing point coordinate setting (relative position from the current position)
(p1: Set value of the axis with a small axis number (X axis))
( p 2 : Set value of the axis with a large axis number ( Y axis))
e1,e2 : End point coordinate setting
(relative position from the current position)
(e1: Set value of the axis with a small axis number ( X axis))
(e2 : Set value of the axis with a large axis number ( Y axis))
Passing point coordinates, end point coordinates Setting range
P Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value converted from pls to nm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be N 1000
U Setting range : Value converted from pls to $\mu \mathrm{m}$
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be U 1
M Setting range : Value converted from pls to mm
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be M0.001
spds : Minimum speed (S) setting
spdf : Maximum speed (F) setting
No unit specified Setting range: 1 to 1,000,000 (unit: pls / s)
Unit specification N Setting range: Value obtained by converting pls / s to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification U Setting range: Value obtained by converting pls / s to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification M Setting range: Value obtained by converting pls / s to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification D Setting range: Value obtained by converting pls / sto an angle
(Example: D0.001 when the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$ )
*) Set only for axes with a small axis number.
*) The unit of the axis with the smaller axis number is reflected in the speed setting.
*) The maximum speed should be greater than or equal to the minimum speed.
$r$ : Acceleration / deceleration time setting
Setting range : 1~1,000 ms
*) Set only for axes with a small axis number.
*) If the current position is on a straight line with Passing point coordinates and end point coordinates, an arc cannot be specified, so "NG" is replied.

- Example

Arc drawing operation from the current position to the end point coordinates (1st axis +0.08 mm , 2nd axis +0.12 mm ) via the passing point coordinates (1st axis +0.05 mm , 2nd axis $2+0.03 \mathrm{~mm}$ ) at the stage of 1 st axis and 2 nd axis.
Set the minimum speed $(S)$ to $0.5 \mathrm{~mm} / \mathrm{s}$, the maximum speed $(F)$ to $5 \mathrm{~mm} / \mathrm{s}$, and the acceleration / deceleration time (R) to 50 ms .

| Send | Reply |
| :---: | :---: |
| EP:2A0+M0.05+M0.03+M0.08+M0.12,S0.5F5R50 | OK or OK_D or NG |

*) In the case of the motor excitation is OFF or the limit sensor is detected, it will be "NG" and this command cannot be executed.

80) EP:3 command (Arc interpolation 10 : Perfect circle helical [Prebuffer]) - Description

This is a prebuffer command that sets the move axis, rotation direction, center coordinates, and move speed of an arc interpolation move (perfect circle) and the move destination coordinates of a linear move axis synchronized with an arc interpolation move. If the operation is set up with this command, a reply will be sent when the operation is completed. The operation start command "G" or "G:" is always required after executing this command.
${ }^{*}$ ) If the speed is not set with this command, the interpolation operation speed (composite speed) operates at the minimum speed of the " $\mathrm{D}:$ : command setting speed of the axis with the smaller axis number.
${ }^{*}$ ) When the speed is set with this command, the speed setting of the axis with the smaller axis number is rewritten, so it is necessary to set all of the minimum speed ( S ), maximum speed ( F ), and acceleration / deceleration time (R).
*) This command can be used with the double buffer function. For details, refer to " 2 . About double buffer".
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

## - Command format

Send) EP:3adNnmuc1muc2muz,SspdsFspdfRr

- Parameters

Send) a : Arc axis setting
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
d : Rotation direction setting
0 CW rotation (Clockwise)
1 CCW rotation (Counterclockwise)
n : Number of rotations $\quad 1 \sim 1000$
m : Sign $\quad+$ or - (If there is no sign, it will be " + ")
u : Unit setting
P Designation without unit (movement amount pls and operating speed $\mathrm{pls} / \mathrm{s}$ )
N nanometer designation (Movement amount nm and operating speed $\mathrm{nm} / \mathrm{s}$ )
U micrometer designation (Movement amount $\mu \mathrm{m}$ and operating speed $\mu \mathrm{m} / \mathrm{s}$ )
M mm designation (Movement amount mm and operating speed $\mathrm{mm} / \mathrm{s}$ )
c1,c2 : Center coordinate setting (relative position from the current position)
(c1: Set value of the axis with a small axis number (X axis))
(c2 : Set value of the axis with a large axis number ( Y axis))
z: Linear movement amount setting
(movement amount per rotation from the current position)
For example, if the number of rotations is specified as 2 rotations and the linear movement amount setting is 100 pls , the total linear movement amount will be 200pls.
*) The axis not set by the arc interpolation axis becomes the linear motion axis.
Center coordinates, Linear destination coordinates Setting range
P Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value converted from pls to nm
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be N 1000
U Setting range : Value converted from pls to $\mu \mathrm{m}$
Example): If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be U 1
M Setting range : Value converted from pls to mm
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be M0.001
spds : Minimum speed (S) setting
spdf : Maximum speed ( $F$ ) setting
No unit specified Setting range: 1 to 1,000,000 (unit: pls / s)
Unit specification N Setting range: Value obtained by converting pls / s to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification U Setting range: Value obtained by converting pls $/ \mathrm{s}$ to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification M Setting range: Value obtained by converting pls / s to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification D Setting range: Value obtained by converting pls / s to an angle
(Example: D0.001 when the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$ )
*) Set only for axes with a small axis number.
${ }^{*}$ ) The unit of the axis with the smaller axis number is reflected in the speed setting.
${ }^{*}$ ) The maximum speed should be greater than or equal to the minimum speed.
$r$ : Acceleration / deceleration time setting
Setting range : $1 \sim 1,000 \mathrm{~ms}$
*) Set only for axes with a small axis number.

- Example

At the stage of the 1st and 2nd axes, the operation of drawing a circle clockwise from the current position to the current position centering on the relative coordinates (1st axis Opls, 2nd axis 5000 pls). Linear operation with relative coordinates (3rd axis 2000pls) synchronized with this as the destination
Set the minimum speed (S) to $100 \mathrm{pls} / \mathrm{s}$, the maximum speed ( F ) to $1000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time ( R ) to 50 ms .

| Send | Reply |
| :---: | :--- |
| EP:3A0N1+P0+P5000+P2000,S100F1000R50 | OK or OK_D or NG |

*) In the case of the motor excitation is OFF or the limit sensor is detected, it will be "NG" and this command cannot be executed.

81) EP:4 command (Arc interpolation 11: Angular helical [Prebuffer])

- Description

This is a pre-buffer command that sets the move axis, rotation direction, center coordinates, end point angle (deg), and move speed of an arc interpolation move and the move destination coordinates of a linear move axis synchronized with an arc interpolation move. If the operation is set up with this command, a reply will be sent when the operation is completed. The operation start command "G" or "G:" is always required after executing this command.
${ }^{*}$ ) If the speed is not set with this command, the interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed of the axis with the smaller axis number.
*) When the speed is set with this command, the speed setting of the axis with the smaller axis number is rewritten, so it is necessary to set all of the minimum speed ( S ), maximum speed ( F ), and acceleration / deceleration time (R).
${ }^{*}$ ) This command can be used with the double buffer function.
For details, refer to "2. About double buffer".
*) An error occurs because the end point coordinates are calculated. Please use it after confirming it with the actual machine.
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) EP:4admuc1muc2Daemuz ,SspdsFspdfRr

- Parameters

Send) a : Arc axis setting
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
d : Rotation direction setting
0 CW rotation (Clockwise)
1 CCW rotation (Counterclockwise)
m : Sign + or - (If there is no sign, it will be "+")
u : Unit setting
$P$ Designation without unit
(movement amount pls and operating speed pls/s)
N nanometer designation (Movement amount nm and operating speed $\mathrm{nm} / \mathrm{s}$ )
$\cup$ micrometer designation (Movement amount $\mu \mathrm{m}$ and operating speed $\mu \mathrm{m} / \mathrm{s}$ )
M mm designation (Movement amount mm and operating speed $\mathrm{mm} / \mathrm{s}$ ) c1,c2 : Center coordinate setting (relative position from the current position) (c1: Set value of the axis with a small axis number (X axis)) (c2 : Set value of the axis with a large axis number (Y axis))
$z$ : Linear movement amount setting
(Amount of movement from the current position)
If the angle is less than $360^{\circ}$, the amount of movement until the angle is moved is $360^{\circ}$ or more, the amount of movement per rotation. For example, if the linear movement amount is set to 100pls at $540^{\circ}$ (one and a half rotations), the total linear movement amount will be 150pls.
${ }^{*}$ ) Since the total linear movement amount is calculated, an error will occur. Please use it after confirming it with the actual machine.
P Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value converted from pls to nm Example):
If the scale resolution is 1 nm at 1,000 pls, it will be N 1000
$U$ Setting range : Value converted from pls to $\mu \mathrm{m}$ Example): If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be U 1
M Setting range : Value converted from pls to mm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be M0.001
ae : End point angle (deg) setting Setting range : $0^{\circ}<$ ae $\leqq 360000^{\circ}$
spds : Minimum speed (S) setting
spdf : Maximum speed (F) setting
No unit specified Setting range: 1 to 1,000,000 (unit: pls / s)
Unit specification N Setting range: Value obtained by converting pls / s to nm (Example: N1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification U Setting range: Value obtained by converting pls / s to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification M Setting range: Value obtained by converting pls / s to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification D Setting range: Value obtained by converting pls / s to an angle
(Example: D0.001 when the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$ )
${ }^{*}$ ) Set only for axes with a small axis number.
${ }^{*}$ ) The unit of the axis with the smaller axis number is reflected in the speed setting.
*) The maximum speed should be greater than or equal to the minimum speed.
$r$ : Acceleration / deceleration time setting
Setting range : $1 \sim 1,000 \mathrm{~ms}$
*) Set only for axes with a small axis number.

## - Example

On the 1st and 3rd axis stages, an arc is drawn in the CW direction from the current position to the end point angle of $90^{\circ}$ around the relative position from the current position (1st axis Opls, 3rd axis +100 pls ). A linear operation with the relative coordinates (2nd axis 50pls) synchronized with this as the destination. Set the minimum speed (S) to $100 \mathrm{pls} / \mathrm{s}$, the maximum speed $(\mathrm{F})$ to $1000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time (R) to 50 ms .

| Send | Reply |
| :---: | :---: |
| EP:4B0+P0+P100D90+P50,S100F1000R50 | OK or OK_D or NG |

*) In the case of the motor excitation is OFF or the limit sensor is detected, it will be "NG" and this command cannot be executed.

82) EP:5 command (Arc interpolation 12 : Passing point indication helical [Prebuffer]) - Description

This is a pre-buffer command to set the moving axis of arc interpolation move, passing point coordinates, end point coordinates, moving speed, and moving destination coordinates of the linear move axis synchronized with the arc interpolation move. If the operation is set up with this command, a reply will be sent when the operation is completed. The operation start command " G " or " $\mathrm{G}:$ : is always required after executing this command.
${ }^{*}$ ) If the speed is not set with this command, the interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed of the axis with the smaller axis number.
*) When the speed is set with this command, the speed setting of the axis with the smaller axis number is rewritten, so it is necessary to set all of the minimum speed ( S ), maximum speed ( F ), and acceleration / deceleration time (R).
*) This command can be used with the double buffer function.
For details, refer to "2. About double buffer".
*) An error occurs because the center coordinates are calculated. Please use it after confirming it with the actual machine.
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) EP:5admup1mup2mue1mue2muz,SspdsFspdfRr

```
Parameters
    Send) a : Arc axis setting
    A 1st axis and 2nd axis designation
    B 1st axis and 3rd axis designation
    C 2nd axis and 3rd axis designation
d : Rotation direction setting
    0 CW rotation (Clockwise)
    1 CCW rotation (Counterclockwise)
m : Sign + or - (If there is no sign, it will be "+")
u : Unit setting
    \(P\) Designation without unit
        (movement amount pls and operating speed pls/s)
    N nanometer designation
        (Movement amount nm and operating speed \(\mathrm{nm} / \mathrm{s}\) )
    U micrometer designation
        (Movement amount \(\mu \mathrm{m}\) and operating speed \(\mu \mathrm{m} / \mathrm{s}\) )
    M mm designation
        (Movement amount mm and operating speed \(\mathrm{mm} / \mathrm{s}\) )
p1,p2 : Passing point coordinate setting
    (relative position from the current position)
    ( p 1 : Set value of the axis with a small axis number (X axis))
    (p2 : Set value of the axis with a large axis number (Y axis))
e1,e2 : End point coordinate setting
    (relative position from the current position)
    (e1: Set value of the axis with a small axis number (X axis))
    (e2 : Set value of the axis with a large axis number (Y axis))
z : Linear movement destination coordinate setting
    (relative position from the current position)
    \({ }^{*}\) ) The axis not set by the arc interpolation axis becomes the linear motion axis.
    Passing point coordinates, end point coordinates, and
    Linear destination coordinates Setting range
    P Setting range : 0 ~ 999,999,999 (Unit: pls)
    N Setting range : Value converted from pls to nm
            Example):
            If the scale resolution is 1 nm at 1,000 pls, it will be N1000
    \(U\) Setting range : Value converted from pls to \(\mu \mathrm{m}\)
            Example): If the scale resolution is 1 nm at 1,000 pls, it will be U 1
    M Setting range : Value converted from pls to mm
            Example):
            If the scale resolution is 1 nm at \(1,000 \mathrm{pls}\), it will be M0.001
```

spds : Minimum speed (S) setting
spdf : Maximum speed ( $F$ ) setting
No unit specified Setting range: 1 to 1,000,000 (unit: pls / s)
Unit specification N Setting range: Value obtained by converting pls / s to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification U Setting range: Value obtained by converting pls $/ \mathrm{s}$ to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification M Setting range: Value obtained by converting pls / s to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification D Setting range: Value obtained by converting pls / s to an angle
(Example: D0.001 when the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$ )
${ }^{*}$ ) Set only for axes with a small axis number.
${ }^{*}$ ) The unit of the axis with the smaller axis number is reflected in the speed setting.
${ }^{*}$ ) The maximum speed should be greater than or equal to the minimum speed.
$r$ : Acceleration / deceleration time setting
Setting range : $1 \sim 1,000 \mathrm{~ms}$
*) Set only for axes with a small axis number.
*) If the current position is on a straight line with Passing point coordinates and end point coordinates, an arc cannot be specified, so " NG " is replied.

- Example

From the current position on the 1st and 2nd axis stages, via the passing point coordinates ( 1 st axis -0.05 mm , 2nd axis +0.03 mm ) and the end point coordinates (1st axis- 0.08 mm , 2nd axis +0.12 mm ) The action of drawing an arc up to. A linear operation with the relative coordinates (3rd axis +0.1 mm ) synchronized with this as the destination. Set the minimum speed (S) to $0.5 \mathrm{~mm} / \mathrm{s}$, the maximum speed ( F ) to 5 mm / s, and the acceleration / deceleration time (R) to 50 ms .

| Send | Reply |
| :---: | :---: |
| EP:5A0-M0.05+M0.03-M0.08+M0.12+M0.1,S0.5F5R50 | OK or OK_D or NG |

*) In the case of the motor excitation is OFF or the limit sensor is detected, it will be "NG" and this command cannot be executed.

83) K: command (Linear interpolation 1 : [Execution buffer])

- Description

This command sets the move axis, move direction, and relative move amount for a linear interpolation move. After executing this command, the operation start command " G " or " G :" is always required.
*) The interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed for the axis with the smaller axis number.
*) The distance traveled per pulse must be the same between the interpolation axes.
If they are different, the correct interpolation operation will not be performed.

- Command format

Send) K:amuy

- Parameters

Send) a : Axis setting
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
m : Sign + or - (If there is no sign, it will be "+")
u : Unit setting
P Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
y : Moving distance
P Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value converted from pls to nm Example):
If the scale resolution is 1 nm at 1,000 pls, it will be N 1000
$\cup$ Setting range : Value converted from pls to $\mu \mathrm{m}$
Example): If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be U 1
M Setting range : Value converted from pls to mm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be M0.001

- Example

| Send | Reply | Contents |
| :---: | :---: | :--- |
| K:A+P1000+P200 | OK or NG | 1000 pulse movement setting in the 1st axis + <br> direction, 2000 pulse movement setting in the <br> 2nd axis + direction |
| K:D+U1000+P200+M0.3 | OK or NG | 1st axis + direction 1000 $\mu \mathrm{m}$, 2nd axis + <br> direction 200pls, 3rd axis + direction 0.3mm <br> movement setting |

*) In the case of Busy, the motor excitation is OFF or the limit sensor is detected, it will be "NG" and this command cannot be executed.
84) KP: command (Linear Interpolation 2 : [Prebuffer])

- Description

This is a pre-buffer command that sets the move axis, move direction, and relative move amount for a linear interpolation move. If the operation is set up with this command, a reply will be sent when the operation is completed.
The operation start command " G " or " $\mathrm{G}:$ : is always required after executing this command.
*) If the speed is not set with this command, the interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed of the axis with the smaller axis number.
*) When the speed is set with this command, the speed setting of the axis with the smaller axis number is rewritten, so it is necessary to set all of the minimum speed (S), maximum speed (F), and acceleration / deceleration time (R).
*) This command can be used with the double buffer function.
For details, refer to "2. About double buffer".
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) KP:amuy, spds,spdf,r

- Parameters

Send) a : Axis setting
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
m : Sign + or - (If there is no sign, it will be " + ")
u : Unit setting
P Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation
y : Moving distance
P Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value converted from pls to nm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be N 1000
U Setting range : Value converted from pls to $\mu \mathrm{m}$ Example): If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be U1
M Setting range : Value converted from pls to mm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls}$, it will be M0.001
spds : Minimum speed (S) setting
spdf : Maximum speed (F) setting
No unit specified Setting range: 1 to 1,000,000 (unit: pls / s)
Unit specification N Setting range: Value obtained by converting pls / s to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification U Setting range: Value obtained by converting pls / s to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification M Setting range: Value obtained by converting pls / s to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ ) Unit specification D Setting range: Value obtained by converting pls / s to an angle
(Example: D0.001 when the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$ )
*) Set only for axes with a small axis number.
*) The unit of the axis with the smaller axis number is reflected in the speed setting.
*) The maximum speed should be greater than or equal to the minimum speed.
$r$ : Acceleration / deceleration time setting Setting range : $1 \sim 1,000 \mathrm{~ms}$
*) Set only for axes with a small axis number.

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| KP:A+P1000+P200 <br> ,S100F1000R200 | OK or OK_D <br> or NG | 1000 pulse movement setting in the 1st axis <br> +direction and 200 pulse movement setting <br> in the 2nd axis + direction, the operating <br> speed is 100 pls / s. |
| KP:D+U1000+P200+M0.3 <br> ,S100F1000R200 | OK or OK_D <br> or NG | $1000 \mu \mathrm{~m}$ movement setting in the 1st axis + <br> direction and 200 pulse movement setting in <br> the 2nd axis + direction, 0.3mm movement |
| setting in the 3rd axis + direction, the |  |  |
| operating speed is $100 \mu \mathrm{~m} / \mathrm{s}$. |  |  |

*) In the case of the motor excitation is OFF or the limit sensor is detected, it will be "NG" and this command cannot be executed.
85) G command (Start operation 1)

- Description

After sending the "M:", "MP:", "A:", "AP:", "E:", "EP:", "K:", "KP:" commands, this command is used to specify all controllable axes and start the operation.

- Command format

Send) G

- Example

| Example of operation settings | Send | Reply | Reply after positioning is completed |
| :--- | :--- | :--- | :--- |
| M:1+P10 | G | OK or NG |  |
| MP:A+P10+P20 | G | OK or NG | 1 <br> 2 <br>  <br>  |
|  |  | *) Operation completed in the order of 1 st <br> axis, 2nd axis |  |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
86) G: command (Start operation 2)

- Description

After sending the "M:", "MP:", "A:", "AP:", "E:", "EP:", "K:" and "KP:" commands, this command is used to start operation.

- Command format

Send) G:a

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes

- Example

| Example of <br> operation settings | Send | Reply | Reply after <br> positioning is <br> completed | Contents |
| :--- | :--- | :--- | :--- | :--- |
| M:1+P10 | G:1 | OK or NG |  | 1st axis designation |
| M:A+P10+P20 | G:A | OK or NG |  | 1st axis and 2nd axis <br> designation |
| M:B+P10+P30 | G:B | OK or NG |  | 1st axis and 3rd axis <br> designation |
| M:W+P10+P20+P30 | G:W | OK or NG |  | Specify all <br> controllable axes |
| M:W+P10+P20+P30 | G: | OK or NG |  | Specify all <br> controllable axes |
| MP:1+P10 | G:1 | OK or NG | 1 | 1st axis designation |
| MP:A+P10+P20 | G:A | OK or NG | 1 <br> 2 <br> 2 <br> *) Operation completed <br> in the order of 1st axis, <br> 2nd axis | dst axis and 2nd axis <br> designation |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
87) GC: command (Delete operation setting value)

- Description

Deletes the values set by the "M:", "A:", "E:", and "K:" commands.

- Command format

Send) GC:a

- Parameters

Send) a: Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and $2 n d$ axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
Not specified Specify all controllable axes

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| GC:1 | OK or NG | Delete the 1st axis |
| GC:A | OK or NG | Delete the 1st and 2nd axis |
| GC:B | OK or NG | Deleted the 1st and 3rd axes |
| GC:W | OK or NG | Delete all controllable axes |
| GC: | OK or NG | Delete all controllable axes |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
88) J: command (Jog driving operation 1)

- Description

This command drives the stage continuously at the minimum speed ( S ) (constant speed drive).
To stop, send the stop command "L:". It also stops when the limit sensor is detected. The operation start command " G " or " $\mathrm{G}:$ : is always required after executing this command.

- Command format

Send) J:am

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
m : Sign + or - (If there is no sign, it will be " + ")

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| $\mathrm{J}: 1+$ | OK or NG | 1st axis + direction |
| $\mathrm{J}: \mathrm{A}_{+-}$ | OK or NG | 1st axis + direction, 2nd axis-direction |
| $\mathrm{J} \mathrm{B}++$ | OK or NG | 1st axis + direction, 3rd axis + direction |
| $\mathrm{J}: \mathrm{W}+-+$ | OK or NG | The Controllable axis is 3 axes, 1st axis + <br> direction, 2nd axis-direction, 3rd axis + <br> direction |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
89) D: command (Speed setting)

- Description

Sets the stage operating speed. When the power is turned on, the minimum speed (S), maximum speed ( F ), and acceleration/deceleration time ( R ) are initially set according to the speed number set by the memory switch "SPEED"-"SPEED SEL" setting.

- Command format

Send) D:aSspdsFspdfRr

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
spds : Minimum speed (S) setting Setting range : 1 ~ 1,000,000 pls/s
spdf : Maximum speed (F) setting Setting range : $1 \sim 1,000,000 \mathrm{pls} / \mathrm{s}$
*) Please set it to the minimum speed (S) or higher.
$r$ : Acceleration / deceleration time (R) setting
Setting range : $1 \sim 1,000 \mathrm{~ms}$

- Example 1

| Send | Reply | Contents |
| :--- | :--- | :--- |
| D:1S100F1000R100 | OK or NG | The operating speed of the first axis is the <br> minimum speed (S) 100pls / s, the maximum <br> speed (F) 1000pls / s, acceleration / deceleration <br> time (R) 100ms. |
| D:AS100F1000R100 | OK or NG | - The operating speed of the first axis is minimum <br> speed (S) 100pls / s, maximum speed (F) 1000pls <br> S200F2000R200 <br> /s, acceleration / deceleration time (R) 100ms. <br> - The operating speed of the second axis is <br> minimum speed (S) 200pls /s, maximum speed |
| (F) 2000pls/s, acceleration / deceleration time (R) |  |  |

[^4]- Example 2

| Send | Reply | Contents |
| :---: | :---: | :---: |
| D:WS100F1000R100 <br> S200F2000R200 <br> S300F3000R200 | OK or NG | here are 3 controllable axes, <br> - The operating speed of the first axis is minimum speed (S) 100pls / s, maximum speed (F) 1000pls / s, acceleration / deceleration time (R) 100 ms . <br> - The operating speed of the second axis is minimum speed (S) 200pls / s, maximum speed (F) 2000pls / s, acceleration / deceleration time (R) 200ms. <br> - The operating speed of the 3rd axis is minimum speed (S) 300pls / s, maximum speed (F) 3000pls / s, acceleration / deceleration time (R) 200ms. |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
90) DS: command (Minimum speed setting)

- Description

Sets the minimum speed $(S)$ of the stage. When the power is turned on, the minimum speed (S) is initially set to the speed number based on the "SPEED" - "SPEED SEL" setting of the memory switch.

- Command format

Send) DS:auspd

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and $2 n d$ axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
$u$ : Unit setting
F Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation
spd : Operating speed
F Setting range : 1 ~ 1,000,000(Unit: pls/s)
N Setting range : Value converted from pls to nm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$, it will be N 1000
$U$ Setting range : Value converted from pls to $\mu \mathrm{m}$
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$, it will be U 1
M Setting range : Value converted from pls to mm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$, it will be M 0.001
D Setting range: Value converted from pls to angle
Example):
If the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$, it will be D0.001

- Example

| Send | Reply | Contents |
| :---: | :---: | :---: |
| DS:1F100 | OK or NG | Minimum speed (S) of the first axis is 100 pls/s |
| DS:AF100F200 | OK or NG | The minimum speed (S) of the 1st axis is $100 \mathrm{pls} / \mathrm{s}$, and the minimum speed (S) of the 2nd axis is $200 \mathrm{pls} / \mathrm{s}$. |
| DS:BF100F300 | OK or NG | The minimum speed (S) of the 1st axis is $100 \mathrm{pls} / \mathrm{s}$, and the minimum speed (S) of the 3 rd axis is $300 \mathrm{pls} / \mathrm{s}$. |
| DS:WM0.001M0.002M0.003 | OK or NG | The controllable axis is 3 axes, the minimum speed (S) of the 1st axis is 100 pls / s, the minimum speed (S) of the 2nd axis is $200 \mathrm{pls} / \mathrm{s}$, and the minimum speed (S) of the 3rd axis is $300 \mathrm{pls} / \mathrm{s}$. |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
91) DF: command (Maximum speed setting)

- Description

Sets the maximum speed ( F ) of the stage. When the power is turned on, the maximum speed (F) of the speed number by the "SPEED" - "SPEED SEL" setting of the memory switch is initially set.

- Command format

Send) DF:auspd

- Parameters

Send) a: Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
u : Unit setting
F Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation
spd : Operating speed
F Setting range : 1 ~ 1,000,000(Unit: pls/s)
N Setting range : Value converted from pls to nm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$, it will be N 1000
U Setting range : Value converted from pls to $\mu \mathrm{m}$
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$, it will be U 1
M Setting range : Value converted from pls to mm
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$, it will be M 0.001
D Setting range : Value converted from pls to angle
Example):
If the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$, it will be D0.001

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| DF:1F1000 | OK or NG | Maximum speed (S) of the 1st axis is 1000 <br> pls/s |
| DF:AF1000F2000 | OK or NG | The maximum speed (S) of the 1st axis is <br> 1000 pls /s, and the maximum speed (S) of <br> the 2nd axis is 2000 pls / s. |
| DF:BF1000F3000 | OK or NG | The maximum speed (S) of the 1st axis is <br> 1000 pls /s, and the maximum speed (S) of <br> the 3rd axis is 3000 pls /s. |
| DF:WF1000F2000F3000 | OK or NG | The controllable axis is 3 axes, the maximum <br> speed (S) of the 1st axis is 1000 pls / s, the <br> maximum speed (S) of the 2nd axis is 2000 pls <br> $/ \mathrm{s}$, and the maximum speed (S) of the 3rd axis <br> is 3000 pls / s. |
| DF:WM0.01M0.02M0.03 | OK or NG | The controllable axis is 3 axes, the maximum <br> speed (S) of the 1st axis is $0.01 \mathrm{~mm} / \mathrm{s}$, the <br> maximum speed (S) of the 2nd axis is 0.02 mm <br> $/ \mathrm{s}$, and the maximum speed (S) of the 3rd axis <br> is $0.01 \mathrm{~mm} / \mathrm{s}$. |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
92) DR: command (Acceleration / deceleration setting)

- Description

Sets the acceleration/deceleration time $(\mathrm{R})$ of the stage. When the power is turned on, the acceleration/deceleration time (R) of the speed number set by the "SPEED"

- "SPEED SEL" setting of the memory switch is initially set.
- Command format

Send) DR:ar

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
$r$ : Acceleration / deceleration time (R) setting 1 ~ 1000 (Unit: ms)

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| DR:1 50 | OK or NG | Acceleration / deceleration time (R) of the 1st axis is <br> 50 ms |
| DR:A 50,100 | OK or NG | The acceleration / deceleration time (R) of the 1st <br> axis is 50 ms and the acceleration / deceleration <br> time (R) of the 2nd axis is 100 ms. |
| DR:W 50,100,150 | OK or NG | The controllable axis is 3 axes, the acceleration / <br> deceleration time (R) of the 1st axis is 50ms, the <br> acceleration / deceleration time (R) of the 2nd axis is <br> 100 ms , and the acceleration / deceleration time (R) <br> of the 3rd axis is 150ms. |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
93) JD: command (Setting for speed override during jog operation)

- Description

Change the operating speed while operating with the "J:" command.
*) At the end of the "J:" command operation, the maximum speed set by the " $\mathrm{D}: "$ command is overwritten.

- Command format

Send) JD:auspd

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
u : Unit setting
F Designation without unit (pulse)
N nanometer designation
U micrometer designation
M mm designation
D degree designation
spd : Operating speed
F Setting range : 1 ~ 1,000,000(Unit: pls/s)
N Setting range : Value converted from pls to nm Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$, it will be N 1000
$U$ Setting range : Value converted from pls to $\mu \mathrm{m}$
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$, it will be U 1
M Setting range : Value converted from pls to mm
Example):
If the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$, it will be M 0.001
D Setting range : Value converted from pls to angle
Example):
If the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$, it will be D 0.001

- Example

| Send | Reply | Contents |
| :---: | :---: | :---: |
| JD:1F1000 | $\begin{array}{\|l\|l} \hline \text { OK } & \text { or } \\ \text { NG } \end{array}$ | Changed the operating speed of the 1st axis to 1000pls / s |
| JD:AF1000F2000 | $\begin{array}{\|ll\|} \hline \text { OK } & \text { or } \\ \text { NG } & \\ \hline \end{array}$ | Changed the operating speed of the 1st axis to $1000 \mathrm{pls} / \mathrm{s}$ and the operating speed of the 2nd axis to 2000pls / s. |
| JD:BF1000F3000 | $\begin{array}{\|l\|l} \hline \text { OK } & \text { or } \\ \text { NG } & \\ \hline \end{array}$ | Changed the operating speed of the 1st axis to 1000 pls / s and the operating speed of the 3rd axis to $3000 \mathrm{pls} / \mathrm{s}$. |
| JD:WM0.01M0.02M0.03 | $\begin{array}{\|l\|l} \hline \text { OK } & \text { or } \\ \text { NG } & \\ \hline \end{array}$ | The controllable axis is 3 axes, the operating speed of the 1 st axis is changed to $0.01 \mathrm{~mm} / \mathrm{s}$, the operating speed of the 2nd axis is changed to $0.02 \mathrm{~mm} / \mathrm{s}$, and the operating speed of the 3rd axis is changed to $0.03 \mathrm{~mm} / \mathrm{s}$. |

*) It can be used only during operation with the "J." command.
94) B: command (Origin return speed setting)

- Description

Set the home origin return speed of the stage. When the power is turned on, the "ORG (S)", "ORG (F)", and "ORG (R)" of the memory switch "ORG" are initially set.

- Command format

Send) B:aSspdsFspdfRr

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
A 1st axis and 2 nd axis designation
B 1st axis and 3rd axis designation
C 2nd axis and 3rd axis designation
D 1st axis, 2nd axis and 3rd axis designation
W Specify all controllable axes
spds : Minimum speed (S) setting Setting range : $1 \sim 1,000,000 \mathrm{pls} / \mathrm{s}$
spdf : Maximum speed (F) setting Setting range : $1 \sim 1,000,000 \mathrm{pls} / \mathrm{s}$
*) Please set it to the minimum speed (S) or higher
$r$ : Acceleration / deceleration time (R) setting
Setting range : $1 \sim 1,000 \mathrm{~ms}$

- Example 1

| Send | Reply | Contents |
| :--- | :--- | :--- |
| B:1S100F1000R100 | OK or NG | The origin return speed of the 1st axis is the <br> minimum speed (S) 100pls / s, the maximum <br> speed (F) 1000pls / s, and the acceleration / <br> deceleration time (R) 100ms. |
| B:AS100F1000R100 <br> S200F2000R200 | OK or NG | - The origin return speed of the 1st axis is the <br> minimum speed (S) 100pls / s, the maximum <br> speed (F) 1000pls / s, and the acceleration / <br> deceleration time (R) 100ms. <br> - The origin return speed of the 2nd axis is the <br> minimum speed (S) 200pls / s, the maximum <br> speed (F) 2000pls / s, and the acceleration / <br> deceleration time (R) 200ms. |
| B:BS100F1000R100 | OK or NG | - The origin return speed of the 1st axis is the <br> minimum speed (S) 100pls / s, the maximum <br> S300F3000R200 <br> speed (F) 1000pls / s, and the acceleration / <br> deceleration time (R) 100ms. <br> - The origin return speed of the 3rd axis is the <br> minimum speed (S) 300pls / s, the maximum <br> speed (F) 3000pls /s, and the acceleration / <br> deceleration time (R) 200ms. |

[^5]- Example 2

| Send | Reply | Contents |
| :---: | :---: | :---: |
| B:WS100F1000R100 <br> S200F2000R200 <br> S300F3000R200 | OK or NG | The controllable axis is 3 axes, <br> - The origin return speed of the 1 st axis is the minimum speed (S) 100pls / s, the maximum speed (F) 1000pls / s, and the acceleration / deceleration time (R) 100 ms . <br> - The origin return speed of the 2nd axis is the minimum speed (S) 200pls / s, the maximum speed (F) 2000pls / s, and the acceleration / deceleration time (R) 200 ms . <br> - The origin return speed of the 3rd axis is the minimum speed (S) 300pls / s, the maximum speed (F) 3000pls / s, and the acceleration / deceleration time (R) 200 ms . |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
95) I: command (General-purpose IO input confirmation)

- Description

Check the input status of general-purpose input.

- Command format

Send) I:
Reply) i

- Parameters

Reply) i : General-purpose input signal state

$$
0 \sim 63
$$

- General-purpose input signal status (Blanks are OFF)

| Set <br> value | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN1 |  | ON |
| IN2 |  |  | ON | ON |
| IN3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| IN4 |  |  |  |  |  |  |  |  | ON |
| IN5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| IN6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Set value | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN1 |  | ON |
| IN2 |  |  | ON | ON |
| IN3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| IN4 |  |  |  |  |  |  |  |  | ON |
| IN5 | ON |
| IN6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Set <br> value | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN1 |  | ON |  |  | ON |  |
| IN2 |  |  | ON | ON |  |  | ON | ON |  |  | ON | ON |  |  |  | ON |
| IN3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON |  |  |  |
| IN4 |  |  |  |  |  |  |  |  | ON |
| IN5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| IN6 | ON |


| Set <br> value | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN1 |  | ON | O | ON |
| IN2 |  |  | ON | ON |
| IN3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| IN4 |  |  |  |  |  |  |  |  | ON |
| IN5 | ON |
| IN6 | ON |

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| I: | 16 | Only general-purpose input IN5 is ON |

96) O: command (General-purpose IO output command)

- Description

Set the general-purpose output status.

- Command format

Send) O:s

- Parameters

Send) s: General purpose output signal state $0 \sim 63$

- General-purpose output status (Blanks are OFF)

| Set <br> value | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUT1 |  | ON |
| OUT2 |  |  | ON | ON |
| OUT3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| OUT4 |  |  |  |  |  |  |  |  | ON |
| OUT5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| OUT6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Set value | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUT1 |  | ON |
| OUT2 |  |  | ON | ON |
| OUT3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| OUT4 |  |  |  |  |  |  |  |  | ON |
| OUT5 | ON |
| OUT6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Set <br> value | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUT1 |  | ON |  |  | ON |  |
| OUT2 |  |  | ON | ON |  |  | ON | ON |  |  | ON | ON |  |  |  | ON |
| OUT3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON |  |  |  |
| OUT4 |  |  |  |  |  |  |  |  | ON |
| OUT5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| OUT6 | ON |


| Set value | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUT1 |  | ON |
| OUT2 |  |  | ON | ON |
| OUT3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON |  | ON | ON |
| OUT4 |  |  |  |  |  |  |  |  | ON |
| OUT5 | ON |
| OUT6 | ON |

*) The output state is maintained until the next "O:" command is sent.

- Example

| Send | Reply |  |
| :--- | :--- | :--- |
| O:32 | OK or NG | Only OUT6 is ON |

97) T:T command (Trigger output 1 : Timer value specified)

- Description

Specifies the trigger time interval to output the trigger.

- Command format

Send) T:Ta

- Parameters

Send) a : Timer value Setting range : $1 \sim 10000$

$$
(0.01 \sim 100.00 \mathrm{sec})
$$

- Example

| Send | Reply | Contents |
| :---: | :---: | :--- |
| T:T100 | OK or NG | Pulse output every second |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
98) T:P command (Trigger output 2 : Pulse value specified)

- Description

Drive pulse Specify the target axis for trigger output and the trigger pulse interval for the drive pulse.
*) When executing the command, set the operating speed of the automatic stage to 56 kpps or less. (Trigger may not be output if operated at 56 kpps or higher.)

- Command format

Send) T:PaPb

- Parameters

Send) a: Axis setting 1 or 2 or 3
b: Pulse value $2 \sim 30000$

- Example

| Send | Reply | Contents |
| :---: | :---: | :---: |
| T:P2P5 | OK or NG | 2nd axis outputs a pulse every 5 pulse movements |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

99) T:S command (Trigger output 3 : Pulse output prohibited)

- Description

Prohibits trigger output.

- Command format

Send) T:S

- Example

| Send |  |
| :--- | :--- |
| T:S | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
100) T:M command (Trigger output 4 : One-shot trigger output)

- Description

Outputs a one-shot trigger.

- Command format

Send) T:M

- Example

| Send |  |
| :--- | :--- |
| T:M | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
101) T:E command (Trigger output 5: Scale pulse value specified)

- Description

Specifies the target axis for trigger output and the trigger pulse interval for scale pulses.
*) When executing the command, set the operating speed of the automatic stage to 56 kpps or less.
(Trigger may not be output if operated at 56 kpps or higher.)

- Command format

Send) T:EaPmb

- Parameters

Send) a : Axis setting 1 or 2 or 3
m : Sign setting + or- (Sign cannot be omitted)
b: Pulse value $2 \sim 30000$

- Example

| Send | Reply | Contents |
| :---: | :--- | :--- |
| T:E1P+2 | OK or NG | Pulse output every 2 pulse movements in the + <br> direction on the 1st axis |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

*) Even if the trigger returns in the reverse direction due to vibration, etc., it will not output a duplicate trigger.
102) $P: R$ command (Program 1 : Program mode transition)

- Description

Moves to program mode.

- Command format

Send) $\quad P: R$

- Example

| Send | Reply |
| :--- | :--- |
| P:R | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

- Commands available in program mode

| *IDN? | !: | !:S | Q: | Q:S | SRQ: | SRQ: | ?: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L:E | BEC: | P:H | P:P | P:S | P:O | P:E | P:U |
| P:C | P:T | P:ON |  |  |  |  |  |

103) P:H command (Program 2 : Transition to host mode)

- Description

Return to host mode.

- Command format

Send) P:H

- Example

| Send |  |
| :--- | :--- |
| P:H | OK or NG |

*) In the case of Busy, it will be " $N G$ " and this command cannot be executed.
104) P:P command (Program 3 : Program number designation)

- Description

Specify the program number.

- Command format

Send) $\quad \mathrm{P}: \mathrm{Pp}$

- Parameters

Send) p: Program number Setting range : 1~8

- Example

| Send | Reply | Contents |
| :--- | :---: | :--- |
| P:P2 | OK or NG | Select program number 2 |

${ }^{*}$ ) In the case of Busy, it will be " $N G$ " and this command cannot be executed.
105) P:S command (Program 4 : Program operation : Operation start)

- Description

The program operation will start.

- Command format

Send) P:S

- Example

| Send |  |
| :--- | :--- |
| P:S | OK or NG |

${ }^{\text {*) }}$ In the case of Busy, it will be " NG " and this command cannot be executed.
106) P:O command (Program 5 : Program operation : One-line execution operation start)

- Description

The one-line execution operation is started by the program operation.
It can be used during pause with the "P: U" command.

- Command format

Send) P:O

- Example

| Send |  |
| :--- | :--- |
| P:O | OK or NG |

${ }^{\text {*) In }}$ Ine case of Busy, it will be "NG" and this command cannot be executed.
107) P:E command (Program 6 : Program operation : Stop operation)

- Description

Stops the program operation.

- Command format

Send) P:E

- Example

| Send | Reply |
| :--- | :--- |
| P:E | OK or NG |

108) P:U command (Program 7: Program operation : Pause)

- Description

Pauses program operation.

- Command format

Send) P:Uu

- Parameters

Send) u:Pause 0 or 1
0 Pause
1 Unpause

- Example

| Send | Reply | Contents |
| :---: | :---: | :---: |
| P:U0 | OK or NG | Pause program operation |

109) P:C command (Program 8 : Program operation : Send completion signal)

- Description

When the program operation is completed, the "COMP" character string is replied to the PC.

- Command format

Send) P:Cc

- Parameters

Send) c: Signal transmission 0 or 1
0 Signal transmission prohibited
1 Signal transmission enabled

- Example

| Send | Reply | Contents |
| :---: | :---: | :--- |
| P:C1 | OK or NG | Enables completion signal transmission during <br> program operation |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
110) P:T command (Program 9 : Program operation : Send trigger signal)

- Description

When the trigger is output during program operation, the "TRIG" character string is sent to the PC.

- Command format

Send) $\mathrm{P}: \mathrm{Tt}$

- Parameters

Send) $\quad t$ : Trigger signal transmission 0 or 1
0 Prohibition of trigger signal transmission
1 Trigger signal transmission controllable

- Example

| Send | Reply | Contents |
| :---: | :--- | :--- |
| P:T0 | OK or NG | Prohibition of trigger signal transmission at the time <br> of trigger output during program operation |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
111) P:ON command (Program 10 : Shift to edit mode)

- Description

It shifts from the state where it is in the program mode to the program edit mode.
*) The program number can be edited with the number set by the "P: P" command.

- Command format

Send) P:ON

- Example

| Send |  |
| :--- | :--- |
| P:ON | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

- Commands available in program mode

| P:OFF | P:DEL | P:SET | P:GET | P:INIT |
| :--- | :--- | :--- | :--- | :--- |

112) P:OFF command (Program 11 : Program mode transition)

- Description

From the program edit mode, if there is no "END" in all registered lines, "END" is automatically added, the set content is saved, and the program mode is entered.
*) If up to the 4000th line is registered, "END" will not be added automatically.

- Command format

Send) P:OFF

- Example

| Send |  |
| :--- | :--- |
| P:OFF | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
113) P:DEL command (Program 12 : Delete program line designation)

- Description

Delete the program contents by specifying a line in the program edit mode.

- Command format

Send) P:DEL,n

- Parameters

Send) n : Program number $1 \sim 4000$

- Example

| Send | Reply | Contents |
| ---: | :--- | :--- |
| P:DEL,1500 | OK or NG | Deleted line 1500 of program number 1 |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
114) P:SET command (Program 13 : Program line designation setting)

- Description

Set the program contents by specifying the line in the program edit mode.
${ }^{*}$ ) Setting items differ depending on the operation pattern.
*) As for the program number, the number set by the "P: P" command will be edited.
(1) Operation pattern: Relative value operation M , absolute value operation A , linear interpolation $K$
Performs relative, absolute, and linear interpolation.

- Command format

Send1) P:SET,n,p,as1,as2,as3,ap1,ap2,ap3,o,s,w,tm,ta,tv
Send2) P:SET,n,p,as1,as2,as3,ap1,ap2,ap3,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Send1), and if the trigger mode is other than that, Send2).
${ }^{*}$ ) If the trigger mode is for a certain period of time, specify 1 for the trigger target axis ta.

- Parameters

Send)

| n : Program number | $1 \sim 000$ |
| :--- | :--- |
| p : Driving pattern | M or A or K |

*) In case of $K$, please enable 2 or more axes for the following axis states.
as 1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
ap1: 1st axis coordinate value -999,999,999 ~ 999,999,999 pls
ap2 : 2nd axis coordinate value -999,999,999 ~ 999,999,999 pls
ap3: 3rd axis coordinate value -999,999,999 ~ 999,999,999 pls
o: General-purpose output instruction 0~63
$\begin{array}{ll}\mathrm{s}: \text { : Operating speed } & 1 \sim 4 \\ \mathrm{w}: \text { Wait time } & 0 \sim 2560(0.1 \mathrm{sec} \text { unit) }\end{array}$
tm : Trigger mode $\quad 0$ Drive pulse designation
1 Specify a certain time
2 + Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation
*) Output after positioning of all effective axes
5 Trigger issuance prohibited
6 Take over the previous trigger setting
*) When specifying the drive pulse, + scale pulse, andscale pulse, set the set speed to 56 kpps or less.
ta : Trigger target axis $1 \sim 3$
tv : Trigger output interval Trigger mode 0:2~30000 pls
Trigger mode 1: $1 \sim 10000$ ( 0.01 sec uint)
Trigger mode 2,3: $\pm 2 \sim 30000$ pls

- Example

Relative value operation on the 1500th line, 1st, 2nd and 3rd axis controllable, 1st axis movement amount: 100pls, 2nd axis movement amount: 200pls, 3rd axis movement amount: 300pls, general-purpose output instruction: 0, movement speed 1, Wait time: 0 seconds, Trigger mode: Drive pulse, Trigger target axis: 1st axis, Trigger output interval: 100pls set

| Send | Reply |
| :---: | :--- |
| P:SET:1500,M, $1,1,1,100,200,300,0,1,0,0,1,100$ | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(2) Operation pattern : Relative continuous operation CM, Absolute continuous operation CA
Performs continuous operation with relative and absolute values. The specified coordinate value is considered as a passing point and operates continuously without stopping, and a trigger is output when the specified coordinate value is passed. (If it is continuous, the maximum is 256 lines.)
${ }^{*}$ ) When using the trigger output, set the set speed to 56 kpps or less.

## - Command format

Send) P:SET,n,p,as1,as2,as3,ap1,ap2,ap3,o,s,w,tm

- Parameters

Send)

| $\mathrm{n}:$ : Program number | $1 \sim 4000$ |
| :--- | :--- |
| $\mathrm{p}:$ Driving pattern | CM or CA |
| as1: 1st axis state | 0 (axis invalid) or 1 (axis controllable) |
| as2 : 2nd axis state | 0 (axis invalid) or 1 (axis controllable) |
| as3 : 3rd axis state | 0 (axis invalid) or 1 (axis controllable) |

*) Only one axis can be enabled. If multiple axes are enabled, a command error will occur.
ap1: 1st axis coordinate value -999,999,999 ~ 999,999,999 pls
ap2 : 2nd axis coordinate value -999,999,999 ~ 999,999,999 pls
ap3: 3rd axis coordinate value -999,999,999 ~ 999,999,999 pls
o: General-purpose output instruction $0 \sim 63$
s: Operating speed $1 \sim 4$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 0 Drive pulse designation
2 Scale pulse designation

- Example

Relative continuous operation on the 1500th line, controllable only for the 1st axis, 1st axis movement amount: 100pls, 2nd axis movement amount: Opls, 3rd axis movement amount: Opls, general-purpose output instruction: 0, movement speed: 1, Wait time: 0 seconds, Trigger mode: Set drive pulse

| Send | Reply |
| :--- | :--- |
| P:SET,1500,CM, $1,0,0,100,0,0,0,1,0,0$ | OK or NG |

*) In the case of Busy, it will be " NG " and this command cannot be executed.
(3) Operation pattern : Arc interpolation E (Perfect circle)

Executes the arc interpolation operation (specify a perfect circle).

- Command format

Send1)
P:SET,n,p,as1,as2, as3,cm,c1,c2,o,s,w,tm,ta,tv
Send2) P:SET,n,p,as1,as2, as3,cm,c1,c2,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Send1), and if the trigger mode is other than that, Send2).
*) If the trigger mode is for a certain period of time, specify 1 for the trigger target axis ta.
*) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.


## - Example

On the 1500th line, arc interpolation operation, 1st and 3rd axis controllable, arc mode: perfect circle specification CW rotation direction, 1st axis center point coordinate value: 100pls, 3rd axis center point coordinate value: 200pls, general-purpose output instruction: 0 , movement speed: 1 , standby time: 0 seconds, trigger mode: drive pulse, trigger target axis: 1st axis, trigger output interval: 100pls is set, and the operation returns to the current position.

| Send | Reply |
| :---: | :--- |
| P:SET,1500,E,1,0,1,0,100,200,0,1,0,0,1,100 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

(4) Operation pattern : Arc interpolation E (Angle)

Performs circle interpolation operation (angle specification).
*) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.

- Command format

Send1) P:SET,n,p,as1,as2, as3,cm,c1,c2,al,o,s,w,tm,ta,tv
Send2) P:SET,n,p,as1,as2, as3,cm,c1,c2,al,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Send1), and if the trigger mode is other than that, Send2).
${ }^{*}$ ) If the trigger mode is for a certain period of time, specify 1 for the trigger target axis ta.

- Parameters

Send) n : Program number $1 \sim 4000$
$p$ : Driving pattern E
as1: 1st axis state 0 (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state 0 (axis invalid) or 1 (axis controllable)
*) Two axes can be enabled. If all are enabled, a command error will occur.
cm : Circle mode 2 Angle specification CW rotation direction
3 Angle specification CCW rotation direction
c1: Center point coordinate value -999,999,999~999,999,999 pls
*) It is the center point coordinate value of the axis (X axis) with 2 axes enabled in as 1 to 3 and the axis number is small, and is the relative position from the current position.
c2 : Center point coordinate value -999,999,999 ~ 999,999,999 pls ${ }^{*}$ ) It is the center point coordinate value of the axis ( Y axis) with the larger axis number on the 2 axes enabled in as $1 \sim 3$, and is the relative position from the current position.
al : Degree $0 \sim 360$ (Degree)
o : General-purpose output instruction 0~63
s : Operating speed $\quad 1 \sim 4$ (Minimum velocity of c 1 axis (S))
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode $\quad 0$ Drive pulse designation
1 Specify a certain time
2 + Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation
*) Output after positioning of all effective axes
5 Trigger issuance prohibited
6 Take over the previous trigger setting
${ }^{*}$ ) When specifying the drive pulse, + scale pulse, andscale pulse, set the set speed to 56 kpps or less.
ta : Trigger target axis $\quad 1 \sim 3$
tv : Trigger output interval Trigger mode 0:2~30000 pls
Trigger mode 1 : $1 \sim 10000$ ( 0.01 sec uint)
Trigger mode 2,3: $\pm 2 \sim 30000$ pls
*) An error will occur because the center coordinates are calculated. Please use it after confirming it with the actual machine.

- Example

On the 1500th line, arc interpolation operation, 1st and 2nd axis controllable, arc mode: angle specification CW rotation direction, 1st axis center point coordinate value: 100pls, 2nd axis center point coordinate value: -200pls, angle: 90 degrees, General-purpose output instruction: 0 , Operating speed: 1 , Standby time: 0 seconds, Trigger mode: Drive pulse, Trigger target axis: 1st axis, Trigger output interval: 100pls set

| Send | Reply |
| :---: | :---: |
| P:SET, $1500, E, 1,1,0,2,100,-200,90,0,1,0,0,1,100$ | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

(5) Operation pattern : Arc interpolation E (Passing point)

Executes arc interpolation operation. (passing point specification).

- Command format

Send1)
P:SET,n,p,as1,as2, as3,cm,p1,p2,e1,e2,o,s,w,tm,ta,tv

Send2) P:SET,n,p,as1,as2, as3,cm,p1,p2,e1,e2,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Send1), and if the trigger mode is other than that, Send2).
*) If the trigger mode is for a certain period of time, specify 1 for the trigger target axis ta.
*) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.

- Parameters

Send) n : Program number $1 \sim 4000$
p : Driving pattern E
as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
*) Two axes can be enabled. If all are enabled, a command error will occur.
cm : Circle mode 4 Specifying a passing point CW rotation direction
5 Specifying a passing point CW rotation direction
p1: Passing point coordinate value -999,999,999~999,999,999 pls
*) It is the center point coordinate value of the axis ( X axis) with 2 axes enabled in as 1 to 3 and the axis number is small, and is the relative position from the current position.
p2 : Passing point coordinate value -999,999,999~999,999,999 pls
${ }^{*}$ ) It is the center point coordinate value of the axis ( Y axis) with the larger axis number on the 2 axes enabled in as $1 \sim 3$, and is the relative position from the current position.
e1: End point coordinate value -999,999,999~999,999,999 pls
*) It is the center point coordinate value of the axis ( X axis) with 2 axes enabled in as 1 to 3 and the axis number is small, and is the relative position from the current position.
e2 : End point coordinate value -999,999,999 ~ 999,999,999 pls
${ }^{*}$ ) It is the center point coordinate value of the axis ( Y axis) with the larger axis number on the 2 axes enabled in as $1 \sim 3$, and is the relative position from the current position.
o: General-purpose output instruction $0 \sim 63$

| s: Operating speed | $1 \sim 4$ (Minimum velocity of p1, e1 axis (S)) |
| :---: | :---: |
| w : Wait time | $0 \sim 2560$ (0.1 sec unit) |
| tm : Trigger mode | 0 Drive pulse designation |
|  | 1 Specify a certain time |
|  | $2+$ Scale pulse designation |
|  | 3 - Scale pulse designation |
|  | 4 One-shot trigger designation |
|  | *) Output after positioning of all effective axes |
|  | 5 Trigger issuance prohibited |
|  | 6 Take over the previous trigger setting |
|  | *) When specifying the drive pulse, + scale pulse, andscale pulse, set the set speed to 56 kpps or less. |
| ta : Trigger target axis | 1~3 |

# tv : Trigger output interval Trigger mode 0:2~30000 pls <br> Trigger mode $1: 1 \sim 10000$ (0.01sec uint) <br> Trigger mode 2,3 : $\pm 2$ ~ 30000 pls 

- Example

On the 1500th line, arc interpolation operation, 2nd and 3rd axis controllable, arc mode: passing point specification CW rotation direction, 2nd axis passing point coordinate value: 100pls, 3rd axis passing point coordinate value: 150pls, 2nd axis end point Coordinate value: 500pls, 3rd axis end point coordinate value: 200pls, general-purpose output instruction: 0 , movement speed: 1 , standby time: 0 seconds, trigger mode: drive pulse, trigger target axis: 2nd axis, trigger output interval: 100pls The set

| Send | Reply |
| :---: | :---: |
| P:SET, $1500, E, 0,1,1,4,100,150,500,200,0,1,0,0,2,100$ | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

(6) Operation pattern: Helical interpolation EH (Perfect circle)

Executes helical interpolation operation. (specify a perfect circle).
*) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.

- Command format

Send1)
P:SET,n,p,as1,as2, as3,cm,c1,c2,hl,r,o,s,w,tm,ta,tv
Send2) P:SET,n,p,as1,as2, as3,cm,c1,c2,hl,r,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Send1), and if the trigger mode is other than that, Send2).
${ }^{*}$ ) If the trigger mode is for a certain period of time, specify 1 for the trigger target axis ta.

- Parameters

Send) n : Program number $1 \sim 4000$
p : Driving pattern EH
as1: 1st axis state 0 (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3: 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
*) Enable 2 axes of circle interpolation axis. If all are enabled, a command error will occur.
cm : Circle mode
0 Perfect circle designation CW rotation direction
1 Perfect circle designation CCW rotation direction
c1: Center point coordinate value -999,999,999 ~ 999,999,999 pls ${ }^{*}$ ) It is the center point coordinate value of the axis ( X axis) with 2 axes enabled in as 1 to 3 and the axis number is small, and is the relative position from the current position.


## - Example

Helical interpolation operation on the 1500th line, 1st and 2nd axis controllable, arc mode: perfect circle specification CW rotation direction, 1st axis center point coordinate value: Opls, 2nd axis center point coordinate value: 200pls, 3rd axis movement Destination coordinates: 100pls, general-purpose output instruction: 0, operating speed: 1 , waiting time: 0 seconds, trigger mode: drive pulse, trigger target axis: 1 st axis, trigger output interval: 100pls set
*) In the case of Busy, it will be "NG" and this command cannot be executed.

(7) Operation pattern : Helical interpolation EH (Angle) Performs helical interpolation operation. (angle specification).

- Command format

Send1) P:SET,n,p,as1,as2, as3,cm,c1,c2,al,hl,o,s,w,tm,ta,tv
Send2) P:SET,n,p,as1,as2, as3,cm,c1,c2,al,hl,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Send1), and if the trigger mode is other than that, Send2).
${ }^{*}$ ) If the trigger mode is for a certain period of time, specify 1 for the trigger target axis ta.
*) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.

- Parameters

Send) $n$ : Program number $1 \sim 4000$
$p$ : Driving pattern EH
as1: 1st axis state 0 (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state 0 (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state 0 (axis invalid) or 1 (axis controllable)
*) Enable 2 axes of circle interpolation axis. If all are enabled, a command error will occur.
cm : Circle mode

## 2 Angle specification CW rotation direction

3 Angle specification CCW rotation direction
c1: Center point coordinate value -999,999,999 ~ 999,999,999 pls
${ }^{*}$ ) It is the center point coordinate value of the axis ( X axis) with 2 axes enabled in as 1 to 3 and the axis number is small, and is the relative position from the current position.
c2: Center point coordinate value -999,999,999~999,999,999 pls
${ }^{*}$ ) It is the center point coordinate value of the axis ( Y axis) with the larger axis number on the 2 axes enabled in as1 to 3 , and is the relative position from the current position.
al : Angle $\quad 0 \sim 360000$ (Degree)
hl : Linear movement amount setting -999,999,999~999,999,999 pls
*) If the linear movement destination coordinate value of the axis ( $Z$ axis) disabled in as1 to 3 and the angle is less than $360^{\circ}$, the amount of movement until moving that angle is $360^{\circ}$ or more, per rotation. It will be the amount of movement. For example, if the linear movement amount is set to 100 pls at $540^{\circ}$ (one and a half rotations), the total linear movement amount will be 150pls.
*) Since the total linear movement amount is calculated, an error will occur. Please use it after confirming it with the actual machine.
o: General-purpose output instruction $0 \sim 63$
$s$ : Operating speed $\quad 1 \sim 4$ (Minimum speed of c1 axis (S))
w : Wait time $\quad 0 \sim 2560(0.1 \mathrm{sec}$ unit)

| tm : Trigger mode | 0 Drive pulse designation <br> 1 Specify a certain time <br> 2 + Scale pulse designation <br> 3 - Scale pulse designation <br> 4 One-shot trigger designation <br> *) Output after positioning of all effective axes <br> 5 Trigger issuance prohibited <br> 6 Take over the previous trigger setting <br> *) When specifying the drive pulse, + scale pulse, andscale pulse, set the set speed to 56 kpps or less. |
| :---: | :---: |
| ta : Trigger target axis | 1~3 |
| tv : Trigger output interval | Trigger mode 0 : $2 \sim 30000 \mathrm{pls}$ |
|  | Trigger mode 1: $1 \sim 10000$ (0.01sec uint) |
|  | Trigger mode 2,3: $\pm 2 \sim 30000 \mathrm{pls}$ |

- Example

Helical interpolation operation on the 1500th line, 1st and 2nd axis controllable, arc mode: angle specification CW rotation direction, 1st axis center point coordinate value: Opls, 2nd axis center point coordinate value: 200pls, angle: 90 degrees, 3rd axis move destination coordinates: 100pls, general-purpose output instruction: 0, movement speed: 1 , standby time: 0 seconds, trigger mode: drive pulse, trigger target axis: 1 st axis, trigger output interval: 100pls set

| Send | Reply |
| :---: | :---: |
| P:SET,1500,EH, $1,1,0,2,0,200,90,100,0,1,0,0,1,100$ | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

(8) Operation pattern : Helical interpolation EH (Passing point)

Performs helical interpolation operation. (passing point specification).
*) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.

- Command format

Send1) P:SET,n,p,as1,as2, as3,cm,p1,p2,e1,e2,hl,o,s,w,tm,ta,tv
Send2) P:SET,n,p,as1,as2, as $3, \mathrm{~cm}, \mathrm{p} 1, \mathrm{p} 2, \mathrm{e} 1, \mathrm{e} 2, \mathrm{hl}, \mathrm{o}, \mathrm{s}, \mathrm{w}, \mathrm{tm}$
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Send1), and if the trigger mode is other than that, Send2).
*) If the trigger mode is for a certain period of time, specify 1 for the trigger target axis ta.

[^6]
## - Example

On the 1500th line, arc interpolation operation, 2nd and 3rd axis controllable, arc mode: passing point specification CW rotation direction, 2nd axis passing point coordinate value: -100pls, 3rd axis passing point coordinate value: 50pls, 2nd axis End point coordinate value: -150pls, 3rd axis end point coordinate value: 50pls, general-purpose output instruction: 0 , movement speed: 1 , standby time: 0 seconds, trigger mode: drive pulse, trigger target axis: 2nd axis, trigger output interval 10pls set

| Send | Reply |
| :---: | :---: |
| P:SET,1500,EH,0,1,1,4,-100,50,-150,100,50,0,1,0,0,2,10 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

(9) peration pattern : Registered coordinate operation PAV

Executes the operation to the coordinate value registered by the "PAV:" command.
${ }^{*}$ ) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.

- Command format

Send1) P:SET,n,p,as1,as2,as3,m,o,s,w,tm,ta,tv
Send2) P:SET,n,p,as1,as2,as3,m,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Send1), and if the trigger mode is other than that, Send2).

- Parameters

Send) n: Program number $1 \sim 4000$
p : Driving pattern PAV
as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state 0 (axis invalid) or 1 (axis controllable)
m : Coordinate value information registration number $1 \sim 20$
o: General-purpose output instruction $0 \sim 63$
s: Operating speed $\quad 1 \sim 4$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
$\mathrm{tm}:$ Trigger mode 0 Drive pulse designation
1 Specify a certain time
2 + Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation
*) Output after positioning of all effective axes
5 Trigger issuance prohibited
6 Take over the previous trigger setting
*) When specifying the drive pulse, + scale pulse, andscale pulse, set the set speed to 56 kpps or less.

$$
\begin{array}{ll}
\text { ta : Trigger target axis } & 1 \sim 3 \\
\text { tv : Trigger output interval } & \text { Trigger mode } 0: 2 \sim 30000 \mathrm{pls} \\
& \text { Trigger mode } 1: 1 \sim 10000(0.01 \text { sec uint }) \\
& \text { Trigger mode } 2,3: \pm 2 \sim 30000 \text { pls }
\end{array}
$$

- Example

On the 1500th line, registration position operation, 1st, 2nd, 3rd axis controllable, 1st axis registration number: 1, 2nd axis registration number: 2 , 3rd axis registration number: 3, general-purpose output instruction: 0, movement speed 1, Wait time: 0 seconds, Trigger mode: Drive pulse, Trigger target axis: 1st axis, Trigger output interval: 100pls set

| Send | Reply |
| :---: | :--- |
| P:SET,1500,PAV, $1,1,1,1,2,3,0,1,0,0,1,100$ | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(10) Operation pattern : Mechanical origin return H Performs mechanical origin return.

- Command format

Send) P:SET,n,p,as1,as2,as3,o,w,tm

- Parameters

Send) n : Program number $1 \sim 4000$
p : Driving pattern H
as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
o : General-purpose output instruction $0 \sim 63$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 4 One-shot trigger specification
*) Output after positioning of all effective axes
5 Trigger issuance prohibited

- Example

Mechanical origin return operation, 1st, 2nd and 3rd axis controllable, general-purpose output instruction: 0 , standby time: 0 seconds, trigger mode: one-shot trigger is set on the 1500th line.

| Send | Reply |
| ---: | :--- |
| P:SET,1500,H,1,1,1,0,0,4 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(11) Operation pattern : Logical origin return $Z$ Performs logical origin return.

- Command format

Send) P:SET,n,p,as1,as2,as3,o,s,w,tm

- Parameters

Send) $n$ : Program number $1 \sim 4000$
p : Driving pattern $\quad \mathrm{Z}$
as $1: 1$ st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
o: General-purpose output instruction 0~63
s : Operating speed
1~4
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode

4 One-shot trigger specification
*) Output after positioning of all effective axes
5 Trigger issuance prohibited

- Example

Mechanical origin return operation, 1st, 2nd and 3rd axis controllable, general-purpose output instruction: 0 , standby time: 0 seconds, trigger mode: one-shot trigger is set on the 1500th line.

| Send | Reply |
| :--- | :--- |
| P:SET,1500,Z,1,1,1,0,1,0,4 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(12) Operation pattern : Logical origin setting $R$

Performs the logical origin setting.

- Command format

Send) P:SET,n,p,as1,as2,as3

- Parameters

Send) $n$ : Program number $1 \sim 4000$
p : Driving pattern $\quad \mathrm{Z}$
as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3: 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)

- Example

Set the logical origin and enable the 1st, 2nd, and 3rd axes on the 1500th line.

| Send | Reply |
| :--- | :--- |
| P:SET,1500,R,1,1,1 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(13) Operation pattern : General-purpose I/O INPUT

Wait until the specified I / O terminal is in the general-purpose input state.

- Command format

Send) P:SET,n,p,i

- Parameters

Send) n : Program number $1 \sim 4000$
p : Driving pattern INPUT
i : General-purpose input status $0 \sim 63$

- Example

General-purpose input, general-purpose input status: 1 (only IN 1 is ON ) is set on the 1500th line.

| Send | Reply |
| :--- | :--- |
| P:SET,1500,INPUT,1 | OK or NG |

${ }^{*}$ ) In the case of Busy, it will be "NG" and this command cannot be executed.
(14) Operation pattern : Loop start F

Set the loop start position. Loop ends A loop within the same loop nest a specified number of times between " N ".

- Command format

Send) $P: S E T, n, p, \| l, l v$

- Parameters

Send) n : Program number $1 \sim 4000$
p : Driving pattern F
II : Loop nest $\quad 1 \sim 9$
Iv : Loop value 1 ~65535

- Example

Set loop start, loop nest: 1, loop count: 100 on line 1500

| Send | Reply |
| :--- | :--- |
| P:SET,1500,F,1,100 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(15) Operation pattern : Loop end $N$

Set the loop end position. It returns to the loop start "F" position of the specified loop nest and executes the next line after being executed the specified number of times.

- Command format

Send) P:SET,n,p,ll

- Parameters

| Send) | $\mathrm{n}:$ Program number | $1 \sim 4000$ |
| :--- | :--- | :--- |
|  | $\mathrm{p}:$ Driving pattern | N |
|  | II : Loop nest | $1 \sim 9$ |

- Example

Set loop end, loop nest: 1 on line 1500

| Send | Reply |
| :--- | :--- |
| P:SET,1500,N,1 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(16) Operation pattern : End of execution END Specify the execution end line.
*) If up to the 4000th line is registered, it is not necessary to register "END".
*) "END" is registered in the first line of the initial value of the program.

- Command format

Send) P:SET,n,p

- Parameters

Send) n : Program number $1 \sim 4000$
p : Driving pattern END

- Example

Set the end of execution on the 1500th line

| Send | Reply |
| :--- | :--- |
| P:SET,1500,END | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(17) Operation pattern : Unregistered NONE

Delete the contents of the already registered line and register the unregistered line that does nothing.
*) As the initial value of the program, "NONE" is registered from the first line onward.

- Command format

Send) P:SET,n,p

- Parameters

Send) n : Program number $1 \sim 4000$
p : Driving pattern NONE

- Example

Delete the registered contents on the 1500th line

| Send | Reply |
| :--- | :--- |
| P:SET,1500,NONE | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
115) P:GET command (Program 13 : Get program line designation)

- Description

Get the program contents by specifying a line in the program edit mode.
(1) Operation pattern : Relative value operation M, Absolute value operation A, Linear interpolation K

- Command format

Send) P:GEL,n
Reply1) p,as1,as2,as3,ap1,ap2,ap3,o,s,w,tm,ta,tv
Reply2) p,as1,as2,as3,ap1,ap2,ap3,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Peply1), and if the trigger mode is other than that, Reply2).

- Parameters

Send) n: Program number 1~4000
Reply) p: Driving pattern M or A or K
as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
ap1: 1st axis coordinate value -999,999,999 ~ 999,999,999 pls
ap2: 2nd axis coordinate value -999,999,999 ~ 999,999,999 pls
ap3 : 3rd axis coordinate value -999,999,999 ~ 999,999,999 pls
0 : General-purpose output instruction $0 \sim 63$
s : Operating speed $1 \sim 4$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode $\quad 0$ Drive pulse designation
1 Specify a certain time
2 + Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation
*) Output after positioning of all effective axes
5 Trigger issuance prohibited
6 Take over the previous trigger setting
ta : Trigger target axis $1 \sim 3$
tv : Trigger output interval Trigger mode 0:2~30000 pls
Trigger mode 1 : $1 \sim 10000$ ( 0.01 sec uint)
Trigger mode 2,3 : $\pm 2$ ~ 30000 pls

## - Example

Line 1500 is relative value operation, 1st, 2nd, 3rd axis controllable, 1st axis movement amount: 100pls, 2nd axis movement amount: 200pls, 3rd axis movement amount: 300pls, general-purpose output instruction: 0 , movement speed 1 , Wait time: 0 seconds, Trigger mode: Drive pulse, Trigger target axis: 1st axis, Trigger output interval: Registered at 100pls

| Send | Reply |
| :--- | :---: |
| P:GET,1500 | $\mathrm{M}, 1,1,1,100,200,300,0,1,0,0,1,100$ |

*) In the case of Busy, it will be " NG " and this command cannot be executed.
(2) Operation pattern: Relative continuous operation CM, Absolute continuous operation CA

- Command format

Send) P:GEL,n
Reply) p,as1,as2,as3,ap1,ap2,ap3,o,s,w,tm

- Parameters

Send) $n$ : Program number $1 \sim 4000$
Reply) p: Driving pattern CM or CA
as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
ap1: 1st axis coordinate value -999,999,999 ~ 999,999,999 pls
ap2 : 2nd axis coordinate value -999,999,999 ~ 999,999,999 pls
ap3: 3rd axis coordinate value -999,999,999 ~ 999,999,999 pls
o: General-purpose output instruction $0 \sim 63$
s : Operating speed $1 \sim 4$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 0 Drive pulse designation
2 Scale pulse designation

- Example

Line 1500 is relative continuous operation, controllable only for 1st axis, 1st axis movement amount: 100pls, 2nd axis movement amount: Opls, 3rd axis movement amount: Opls, general-purpose output instruction: 0 , movement speed: 1, Wait time: 0 seconds, Trigger mode: Register with drive pulse

| Send | Reply |
| :--- | ---: |
| P:GET, 1500 | $C M, 1,0,0,100,0,0,0,1,0,0$ |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(3) Operation pattern : Arc interpolation E (Perfect circle)

- Command format

Send) P:GEL,n
Reply1) p,as1,as2, as3,cm,c1,c2,o,s,w,tm,ta,tv
Reply2) p,as1,as2, as3,cm,c1,c2,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Peply1), and if the trigger mode is other than that, Reply2).

- Parameters

Send) $n$ : Program number $1 \sim 4000$
Reply) p: Driving pattern E

| as1: 1st axis state | 0 (axis invalid) or 1 (axis controllable) |
| :---: | :---: |
| as2: 2nd axis state | 0 (axis invalid) or 1 (axis controllable) |
| as3:3rd axis state | 0 (axis invalid) or 1 (axis controllable) |
| cm : Circle mode | 0 Perfect circle designation CW rotation direction |
|  | 1 Perfect circle designation CCW rotation direction |
| c1: Center point coordinate value -999,999,999 ~ 999,999,999 pls |  |
| c2 : Center point coordinate value -999,999,999 ~ 999,999,999 pls |  |
| o : General-purpose output instruction 0~63 |  |
| s : Operating speed 1~4 |  |
| w : Wait timetm : Trigger mode | $0 \sim 2560$ (0.1 sec unit) |
|  | 0 Drive pulse designation |
| tm : Trigger mode | 1 Specify a certain time |
|  | 2 + Scale pulse designation |
|  | 3 - Scale pulse designation |
|  | 4 One-shot trigger designation |
|  | *) Output after positioning of all effective axes |
|  | 5 Trigger issuance prohibited |
|  | 6 Take over the previous trigger setting |
| ta : Trigger target axis <br> tv : Trigger output interval | 1~3 |
|  | Trigger mode 0 : 2 ~ 30000 pls |
|  | Trigger mode 1: $1 \sim 10000$ (0.01sec uint) |
|  | Trigger mode 2,3: $\pm 2 \sim 30000 \mathrm{pls}$ |

- Example

Line 1500 is arc interpolation operation, 1st and 3rd axis controllable, arc mode: perfect circle specification CW rotation direction, 1st axis center point coordinate value: 100pls, 3rd axis center point coordinate value: 200pls, general-purpose output instruction: 0 , operating speed: 1 , standby time: 0 seconds, trigger mode: drive pulse, trigger target axis: 1st axis, trigger output interval: 100pls registered

| Send | Reply |
| :--- | :--- |
| P:GET,1500 | $\mathrm{E}, 1,0,1,0,100,200,0,1,0,0,1,100$ |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(4) Operation pattern : Arc interpolation E (Angle)

- Command format

Send) P:GEL,n
Reply1) p,as1,as2, as3,cm,c1,c2,al,o,s,w,tm,ta,tv
Reply2) p,as1,as2, as3,cm,c1,c2,al,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Peply 1 ), and if the trigger mode is other than that, Reply2).

- Parameters

Send) $n$ : Program number $1 \sim 4000$
Reply) $p$ : Driving pattern E
as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3: 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)

| cm : Circle mode | 2 Angle specification CW rotation direction <br> 3 Angle specification CCW rotation direction |
| :---: | :---: |
| c1: Center point coordinate | value -999,999,999 ~ 999,999,999 pls |
| c2 : Center point coordinate | value -999,999,999 ~ 999,999,999 pls |
| al : Angle | 0 ~ 360(Degree) |
| o : General-purpose output | instruction 0~63 |
| s : Operating speed | 1 ~ 4 |
| w : Wait time | $0 \sim 2560$ (0.1 sec unit) |
| tm : Trigger mode | 0 Drive pulse designation |
|  | 1 Specify a certain time |
|  | 2 + Scale pulse designation |
|  | 3 - Scale pulse designation |
|  | 4 One-shot trigger designation |
|  | *) Output after positioning of all effective axes |
|  | 5 Trigger issuance prohibited |
|  | 6 Take over the previous trigger setting |
| ta : Trigger target axis | 1 ~ 3 |
| tv : Trigger output interval | Trigger mode 0: 2 ~ 30000 pls |
|  | Trigger mode $1: 1 \sim 10000$ (0.01sec uint) |
|  | Trigger mode 2,3 : $\pm 2$ ~ 30000 pls |

- Example

Line 1500 is arc interpolation operation, 1st and 2nd axis controllable, arc mode: angle specification CW rotation direction, 1st axis center point coordinate value: 100pls, 2nd axis center point coordinate value: -200pls, angle: 90 degrees, General-purpose output instruction: 0, Operating speed: 1, Standby time: 0 seconds, Trigger mode: Drive pulse, Trigger target axis: 1st axis, Trigger output interval: Registered at 100pls

| Send | Reply |
| :---: | :---: |
| P:GET, 1500 | $E, 1,1,0,2,100,-200,90,0,1,0,0,1,100$ |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(5) Operation pattern : Arc interpolation E (Passing point)

- Command format

Send) P:GEL,n
Reply1) p,as1,as2, as3,cm,p1,p2,e1,e2,o,s,w,tm,ta,tv
Reply2) p,as1,as2, as3,cm,p1,p2,e1,e2,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Peply 1 ), and if the trigger mode is other than that, Reply2).

- Parameters

Send) $n$ : Program number $1 \sim 4000$
Reply) p: Driving pattern
as1: 1st axis state
E
: 2 daxis sate 0 (axis invald) or 1 (axis contolabe)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)

| cm : Circle mode | 4 Specifying a passing point CW rotation direction <br> 5 Specifying a passing point CCW rotation direction |
| :---: | :---: |
| p1: Passing point coordinate value -999,999,999 ~ 999,999,999 pls |  |
| p2 : Passing point coordinate value -999,999,999 ~ 999,999,999 pls |  |
| e1: End point coordinate value -999,999,999 ~ 999,999,999 pls |  |
| e2 : End point coordinate value -999,999,999 ~ 999,999,999 pls |  |
| o : General-purpose output instruction 0~63 |  |
| s: Operating speed 1~4 |  |
| w : Wait time $\quad 0 \sim 2560$ (0.1 sec unit) |  |
| tm : Trigger mode | 0 Drive pulse designation |
|  | 1 Specify a certain time |
|  | 2 + Scale pulse designation |
|  | 3 - Scale pulse designation |
|  | 4 One-shot trigger designation |
|  | *) Output after positioning of all effective axes |
|  | 5 Trigger issuance prohibited |
|  | 6 Take over the previous trigger setting |
| ta : Trigger target axis <br> tv : Trigger output interval | 1~3 |
|  | Trigger mode 0 : 2 ~ 30000 pls |
|  | Trigger mode 1 : $1 \sim 10000$ (0.01sec uint) |
|  | Trigger mode 2,3: $\pm 2 \sim 30000 \mathrm{pls}$ |

- Example

Line 1500 is arc interpolation operation, 2nd and 3rd axis controllable, arc mode: passing point specification CW rotation direction, 2nd axis passing point coordinate value: 100pls, 3rd axis passing point coordinate value: 150pls, 2nd axis end point Coordinate value: 500pls, 3rd axis end point coordinate value: 200pls, general-purpose output instruction: 0 , movement speed: 1 , standby time: 0 seconds, trigger mode: drive pulse, trigger target axis: 2nd axis, trigger output interval: Register at 100pls

| Send | Reply |
| :---: | :---: |
| P:GET,1500 | E, $0,1,1,4,100,150,500,200,0,1,0,0,2,100$ |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(6) Operation pattern : Helical interpolation EH (Perfect circle)

- Command format

Send) P:GEL,n
Reply1) p,as1,as2, as3,cm,c1,c2,hl,r,o,s,w,tm,ta,tv
Reply2) p,as1,as2, as3,cm,c1,c2,hl,r,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Peply1), and if the trigger mode is other than that, Reply2).

- Parameters

Send) $n$ : Program number $1 \sim 4000$
Reply) p: Driving pattern
as1: 1st axis state
EH
0 (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3: 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)

| cm : Circle mode | 0 Perfect circle designation CW rotation direction <br> 1 Perfect circle designation CCW rotation direction |
| :---: | :---: |
| c1: Center point coordinate | value -999,999,999 ~ 999,999,999 pls |
| c2: Center point coordinate | value -999,999,999 ~ 999,999,999 pls |
| hl : Linear destination coord | dinate value -999,999,999 ~ 999,999,999 pls |
| $r$ : Rotation value | 1~1000 |
| o : General-purpose output instruction 0 ~ 63 |  |
| s: Operating speed | $1 \sim 4$ |
| w : Wait time | $0 \sim 2560$ (0.1 sec unit) |
| tm: Trigger mode | 0 Drive pulse designation |
|  | 1 Specify a certain time |
|  | 2 + Scale pulse designation |
|  | 3 - Scale pulse designation |
|  | 4 One-shot trigger designation |
|  | *) Output after positioning of all effective axes |
|  | 5 Trigger issuance prohibited |
|  | 6 Take over the previous trigger setting |
| ta : Trigger target axis <br> tv : Trigger output interval | $1 \sim 3$ |
|  | Trigger mode 0: 2 ~ 30000 pls |
|  | Trigger mode 1: $1 \sim 10000$ (0.01sec uint) |
|  | Trigger mode 2,3 : $\pm 2 \sim 30000 \mathrm{pls}$ |

- Example

Line 1500 is helical interpolation operation, 1st and 2nd axis controllable, arc mode: perfect circle specification CW rotation direction, 1st axis center point coordinate value: Opls, 2nd axis center point coordinate value: 200pls, 3rd axis movement Destination coordinates: 100pls, general-purpose output instruction: 0 , operating speed: 1 , waiting time: 0 seconds, trigger mode: drive pulse, trigger target axis: 1st axis, trigger output interval: registered at 100pls

| Send | Reply |
| ---: | ---: |
| P:GET, 1500 | $\mathrm{EH}, 1,1,0,0,0,200,100,0,1,0,0,1,100$ |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(7) Operation pattern : Helical interpolation EH (Angle)

- Command format

Send) P:GEL,n
Reply1) p,as1,as2, as3,cm,c1,c2,al,hl,o,s,w,tm,ta,tv
Reply2) p,as1,as2, as3,cm,c1,c2,al,hl,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Peply 1 ), and if the trigger mode is other than that, Reply2).

- Parameters

Send) $n$ : Program number $1 \sim 4000$
Reply) p: Driving pattern
as1: 1st axis state
EH
0 (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3: 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(8) Operation pattern : Helical interpolation EH (Passing point)

- Command format

Send) P:GEL,n
Reply1) p,as1,as2, as3,cm,p1,p2,e1,e2,hl,o,s,w,tm,ta,tv
Reply2) p,as1,as2, as3,cm,p1,p2,e1,e2,hl,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Peply1), and if the trigger mode is other than that, Reply2).

- Parameters
Send) n: Program number $1 \sim 4000$

Reply) p: Driving pattern
as1: 1st axis state
EH
0 (axis invalid) or 1 (axis controllable)
0 (axis invalid) or 1 (axis controllable)
0 (axis invalid) or 1 (axis controllable)
$\left.\begin{array}{lll}\mathrm{cm}: \text { : Circle mode } & \begin{array}{l}\text { Specifying a passing point } \\ \text { CW rotation direction }\end{array} \\ & 5 \begin{array}{l}\text { Specifying a passing point } \\ \text { CW rotation direction }\end{array} \\ \text { p1 : Passing point coordinate value } & -999,999,999 \sim 999,999,999 \\ \text { p2 : Pls }\end{array}\right\}$

Example
Line 1500 is arc interpolation operation, 2nd and 3rd axis controllable, arc mode: passing point specification CW rotation direction, 2nd axis passing point coordinate value: -100pls, 3rd axis passing point coordinate value: 50pls, 2nd axis End point coordinate value: -150pls, 3rd axis end point coordinate value: 50pls, general-purpose output instruction: 0 , movement speed: 1 , standby time: 0 seconds, trigger mode: drive pulse, trigger target axis: 2nd axis, trigger output interval Register at 10pls

| Send | Reply |
| ---: | :---: |
| P:GET,1500 | EH, $0,1,1,4,-100,50,-150,100,50,0,1,0,0,2,10$ |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(9) Operation pattern : Registered coordinate operation PAV

- Command format

Send) P:GEL,n
Reply1) p,as1,as2,as3,o,s,w,tm,ta,tv
Reply2) p,as1,as2,as3,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Peply 1), and if the trigger mode is other than that, Reply2).

- Parameters

Send) $n$ : Program number $1 \sim 4000$
Reply) p: Driving pattern PAV
as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
o: General-purpose output instruction 0~63
s : Operating speed $\quad 1 \sim 4$
w : Wait time $0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 0 Drive pulse designation
1 Specify a certain time
2 + Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation
*) Output after positioning of all effective axes
5 Trigger issuance prohibited
6 Take over the previous trigger setting
ta : Trigger target axis $1 \sim 3$
tv : Trigger output interval Trigger mode 0:2~30000 pls
Trigger mode 1 : $1 \sim 10000$ ( 0.01 sec uint)
Trigger mode 2,3: $\pm 2 \sim 30000$ pls

- Example

Line 1500 is registration position operation, 1st, 2nd, 3rd axis controllable, 1st axis registration number: 1,2 nd axis registration number: 2 , 3rd axis registration number: 3, general-purpose output instruction: 0, movement speed 1, Wait time: 0 seconds, Trigger mode: Drive pulse, Trigger target axis: 1st axis, Trigger output interval: Registered at 100pls

| Send | Reply |
| :--- | :---: |
| P:GET,1500 | PAV, $1,1,1,1,2,3,0,1,0,0,1,100$ |

*) In the case of Busy, it will be " NG " and this command cannot be executed.
(10) Operation pattern : Mechanical origin return H

- Command format

Send) P:GEL,n
Reply) p,as1,as2,as3,o,w,tm

- Parameters

Send) $n$ : Program number $1 \sim 4000$
Reply) p : Driving pattern H
as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3: 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
0 : General-purpose output instruction $0 \sim 63$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 4 One-shot trigger specification
5 Trigger issuance prohibited

## - Example

Line 1500 is mechanical origin return operation, 1st, 2nd, 3rd axis controllable, generalpurpose output instruction: 0 , standby time: 0 seconds, trigger mode: registered with one-shot trigger

| Send | Reply |
| :--- | :--- |
| P:GET,1500 | $\mathrm{H}, 1,1,1,0,0,4$ |

[^7](11) Operation pattern : Logical origin return Z

- Command format

Send) P:GEL,n
Reply) p,as1,as2,as3,o,s,w,tm

- Parameters

Send) n: Program number $1 \sim 4000$
Reply) p: Driving pattern Z
as1: 1st axis state 0 (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state 0 (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state 0 (axis invalid) or 1 (axis controllable)
o: General-purpose output instruction $0 \sim 63$
s: Operating speed $\quad 1 \sim 4$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 4 One-shot trigger specification
5 Trigger issuance prohibited

- Example

Line 1500 is logical origin return operation, 1st, 2nd, 3rd axis controllable, generalpurpose output instruction: 0 , standby time: 0 seconds, trigger mode: registered with one-shot trigger

| Send | Reply |
| :--- | :--- |
| P:GET,1500 | Z,1,1,1,0,1,0,4 |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(12) Operation pattern : Logical origin setting $R$

- Command format

Send) P:GEL,n
Reply) p,as1,as2,as3

- Parameters

Send) n : Program number $1 \sim 4000$
Reply) p : Driving pattern Z
as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state 0 (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state 0 (axis invalid) or 1 (axis controllable)

- Example

The 1500th line is registered with the logical origin setting and the 1st, 2nd, and 3rd axes controllable.

| Send | Reply |
| :--- | :--- |
| P:GET,1500 | R,1,1,1 |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(13) Operation pattern : General-purpose I/O INPUT

- Command format

Send) P:GEL,n
Reply) p,i

- Parameters

| Send) | $\mathrm{n}:$ Program number | $1 \sim 4000$ |
| :--- | :--- | :--- |
| Reply) | p : Driving pattern | INPUT |
|  | i : General-purpose input status | $0 \sim 63$ |

- Example

Line 1500 is registered with general-purpose input, input status: 1 (only IN1 is ON)

| Send | Reply |
| :--- | :--- |
| P:GET,1500 | INPUT,1 |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(14) Operation pattern : Loop start F

- Command format

Send) P:GEL,n
Reply) p,Ill,Iv

- Parameters
Send) n: Program number $1 \sim 4000$

Reply) p: Driving pattern F
II : Loop nest $1 \sim 9$
Iv : Loop value 1 ~ 65535

- Example
"Loop start", "Loop hierarchy: 1", "Loop count: 100" are registered in the 1500th line.

| Send | Reply |
| :--- | :--- |
| P:GET,1500 F,1,100 |  |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(15) Operation pattern : Loop end N

- Command format

Send) P:GEL,n
Reply) p,ll

- Parameters

| Send) | $\mathrm{n}:$ Program number | $1 \sim 4000$ |
| :--- | :--- | :--- |
| Reply) | p: Driving pattern | N |
|  | II : Loop nest | $1 \sim 9$ |

- Example

The 1500th line is registered with " loop end " and "loop hierarchy: 1 ".

| Send | Reply |
| :--- | :--- |
| P:GET,1500 | $\mathrm{N}, 1$ |

${ }^{\text {*) }}$ In the case of Busy, it will be " NG " and this command cannot be executed.
(16) Operation pattern : End of execution END

- Command format

Send) P:GEL,n
Reply) p

- Parameters

Send) $n$ : Program number $1 \sim 4000$
Reply) p: Driving pattern END

- Example

Line 1500 is registered at the end of execution

| Send | Reply |
| :--- | :--- |
| P:GET,1500 END |  |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(17) Operation pattern : Unregistered NONE

- Command format

Send) P:GEL,n
Reply) p

- Parameters

| Send) | n : Program number | $1 \sim 4000$ |
| :--- | :--- | :--- |
| Reply) | p : Driving pattern | NONE |

- Example

Line 1500 is unregistered

| Send | Reply |
| :--- | :--- |
| P:GET,1500 | NONE |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
116) P: INIT command (Program 15 : Delete all lines of the program)

- Description

Delete all the program contents in the program edit mode.

- Command format

Send) P:INIT

- Example

| Send | Reply |
| :--- | :--- |
| P:INIT | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
117) MS:ON command (Memory switch operation 1 : Edit mode transition)

- Description

Moves from host mode to memory switch edit mode. The commands that can be used in the memory switch edit mode are "MS: OFF", "MS: SET", "MS: GET", "MS: DEF", and "MS: DEFR".

- Command format

Send) MS:ON

- Example

| Send | Reply |
| :--- | :--- |
| $\mathrm{MS}: \mathrm{ON}$ | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

- Commands available in memory switch edit mode

| ${ }^{*}$ IDN? | $?:$ | MS:OFF | MS:SET | MS:GET | MS:DEF |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MS:DEFR | MS:SETK | MS:GETK | MS:DEFK | MS:DEFRK |  |
|  |  |  |  |  |  |

118) MS:OFF command (Memory switch operation 2 : Host mode transition)

- Description

Saves the settings and returns from memory switch edit mode to host mode.

- Command format

Send) MS:OFF

- Example

| Send | Reply |
| :--- | :--- |
| MS:OFF | OK or NG |

119) MS:SET command (Memory switch operation 3 : Setting)

- Description

Memory switch Set the contents of the memory switch in the edit mode.

- Command format

Send) MS:SET,k,n,s

- Parameters

Send) k : Memory switch item
0 GENERAL General settings
1 INTERFACE
Communication settings
2 SENSOR Sensor settings
3 AXIS
4 MOTOR DRIVER
Axis settings
5 SPEED
Motor driver settings
Speed settings
6 ORG
7 FEEDBACK
8 SOFT LIMIT
Origin settings
Feedback control settings
Soft limit settings
n : Memory switch content number
s : Memory switch setting number
*) For details on each memory switch item, content number, and setting number, refer to the separate " Preparation and Operation ".

- Example 1

Set "MODE SEL (1)" of "GENERAL (0)" to "MANUAL mode (1)".

| Send | Reply |
| :--- | :--- |
| MS:SET, $0,1,1$ | OK or NG |

- Example 2

Set "SPEED12 (S)" (4) of "SPEED" (5) to "1000pps".

| Send | Reply |
| :--- | :--- |
| MS:SET,5,4,1000 | OK or NG |

120) MS:GET command (Memory switch operation 4 : Get)

- Description

Get the contents of the memory switch in the memory switch edit mode.

- Command format

Send) MS:GET,k,n
Reply) s

- Parameters

Send) k : Memory switch item
0 GENERAL General settings
1 INTERFACE Communication settings
2 SENSOR Sensor settings
3 AXIS Axis settings
4 MOTOR DRIVER Motor driver settings
5 SPEED Speed settings
6 ORG Origin settings
7 FEEDBACK Feedback control settings
8 SOFT LIMIT Soft limit settings
n : Memory switch content number
127

Reply) s: Memory switch setting number
*) For details on each memory switch item, content number, and setting number, refer to the separate " Preparation and Operation ".

- Example
"MODE SEL (1)" setting of "GENERAL (0)" is "MANUAL mode (1)"

| Send | Reply |
| :--- | :--- |
| MS:GET, 0,1 | 1 |

121) MS:DEF command (Memory switch operation 5 : Initialization)

- Description

Initialize the contents of the memory switch in the memory switch edit mode.

- Command format

Send) MS:DEF,k,n

- Parameters

Send) k : Memory switch item

| 0 | GENERAL | General settings |
| :--- | :--- | :--- |
| 1 | INTERFACE | Communication settings |
| 2 | SENSOR | Sensor settings |
| 3 | AXIS | Axis settings |
| 4 | MOTOR DRIVER | Motor driver settings |
| 5 | SPEED | Speed settings |
| 6 | ORG | Origin settings |
| 7 | FEEDBACK | Feedback control settings |
| 8 | SOFT LIMIT | Soft limit settings |

n : Memory switch content number
*) For details on each memory switch item, and content number, refer to the separate " Preparation and Operation ".

- Example

Initialize "MODE SEL (1)" of "GENERAL (0)" (HOST mode).

| Send | Reply |
| :--- | :--- |
| MS:DEF, 0,1 | OK or NG |

122) MS:DEFR command (Memory switch operation 6 : Get the initial value)

- Description

Get the initial value of the memory switch contents in the memory switch edit mode.

- Command format

Send) MS:DEFR,k,n
Reply) s

- Parameters

Send) k : Memory switch item
0 GENERAL General settings

1 INTERFACE Communication settings
2 SENSOR Sensor settings
3 AXIS Axis settings
4 MOTOR DRIVER Motor driver settings
5 SPEED Speed settings
6 ORG
7 FEEDBACK Feedback control settings
8 SOFT LIMIT Soft limit settings
n : Memory switch content number
Reply) $s$ : Default setting number of memory switch contents
*) For details on each memory switch item, content number, and default setting number, refer to the separate " Preparation and Operation ".

- Example

Gets the default setting for "AXIS (0)" for "GENERAL (0)".

| Send | Reply | Memo |
| :---: | :--- | :--- |
| MS:DEFR,0,0 | 6 | The default setting for "AXIS (0)" is "1 + 2 + 3 (6)" |

123) MS:SETK command (Memory switch operation command 3 : Setting command)

- Description

Set all the contents of the memory switch item in the memory switch edit mode.

- Command format

Send) MS:SETK,k,s1,s2,...,sn

- Parameters

Send) k : Memory switch item

0 GENERAL General settings
1 INTERFACE
2 SENSOR Sensor settings
3 AXIS Axis settings
4 MOTOR DRIVER Motor driver settings
5 SPEED Speed settings
6 ORG Origin settings
7 FEEDBACK Feedback control settings
8 SOFT LIMIT Soft limit settings
s1 ~ sn : Setting number
*) The number of settings varies depending on the memory switch item.
*) For details on each memory switch item, content number, and setting number, refer to the separate " Preparation and Operation ".

- Example

Set the "GENERAL (0)" setting as follows.
No. 1 AXIS: $1+2+3$ (6) No. 6 JOG Y SEL: 2nd axis (1)
No. 2 MODE SEL: HOST mode (0) No. 7 CMD FORMAT: SHOT / FC mode (0)
No. 3 SLEEP SEL: ON (1) No. 8 TRG / LEV: Positive logic (0)
No. 4 BEEP SEL: ON (1) No. 9 TRG WIDTH: $10 \mu \mathrm{sec}(0)$
No. 5 JOG X SEL: 1st axis (0)

| Send | Reply |
| :--- | :--- |
| MS:SETK, $0,6,0,1,1,0,1,0,0,0$ | OK or NG |

124) MS:GETK command (Memory switch operation 4 : Get)

- Description

Get all the contents of the memory switch item in the memory switch edit mode.

- Command format

Send) MS:GETK,k
Reply) s1,s2,...sn

- Parameters

Send) k : Memory switch item 0 GENERAL General settings
1 INTERFACE Communication settings
2 SENSOR Sensor settings
3 AXIS Axis settings
4 MOTOR DRIVER Motor driver settings
5 SPEED Speed settings
6 ORG Origin settings
7 FEEDBACK Feedback control settings
8 SOFT LIMIT Soft limit settings
Reply) s1~sn : Setting number
*) The number of settings varies depending on the memory switch item.
*) For details on each memory switch item, and setting number, refer to the separate " Preparation and Operation ".

- Example

Gets the "GENERAL (0)" setting.

| No. 1 AXIS: $1+2+3(6)$ | No.6 JOG Y SEL: 2nd axis (1) |
| :--- | :--- |
| No. 2 MODE SEL: HOST mode (0) | No. 7 CMD FORMAT: SHOT / FC mode (0) |
| No.3 SLEEP SEL: ON (1) | No.8 TRG / LEV: Positive logic (0) |
| No. 4 BEEP SEL: ON (1) | No.9 TRG WIDTH: $10 \mu \mathrm{sec}(0)$ |
| No. 5 JOG X SEL: 1st axis (0) | Reply |
| Send | $6,0,1,1,0,1,0,0,0$ |
| MS:GETK, 0 |  |

125) MS:DEFK command (Memory switch operation 5 : Initialization)

- Description

Initialize all the contents of the memory switch item in the memory switch edit mode.

- Command format

Send) MS:DEFK,k

- Parameters

Send) k : Memory switch item
0 GENERAL General settings

## 1 INTERFACE

 Communication settings2 SENSOR
Sensor settings
3 AXIS
Axis settings
4 MOTOR DRIVER
Motor driver settings
5 SPEED
6 ORG
7 FEEDBACK
Speed settings
Origin settings Feedback control settings 8 SOFT LIMIT Soft limit settings
*) For details on each memory switch item, refer to the separate " Preparation and Operation ".

- Example

| Send | Reply | Contents |
| ---: | :--- | :--- |
| MS:DEFK,0 | OK or NG | Initialize GENERAL (0) |

126) MS:DEFRK command (Memory switch operation 6 : Get the initial value)

- Description

Get the initial value of all the contents of the memory switch item in the memory switch edit mode.

- Command format

Send) MS:DEFRK,k
Reply) $\mathrm{s} 1 \sim \mathrm{sn}$

- Parameters

Send) k : Memory switch item

| 0 | GENERAL | General settings |
| :---: | :---: | :---: |
| 1 | INTERFACE | Communication settings |
| 2 | SENSOR | Sensor settings |
| 3 | AXIS | Axis settings |
| 4 | MOTOR DRIVER | Motor driver settings |
| 5 | SPEED | Speed settings |
| 6 | ORG | Origin settings |
| 7 | FEEDBACK | Feedback control settings |
| 8 | SOFT LIMIT | Soft limit settings |
| $\sim \mathrm{sn}$ : Default setting number of memory switch contents |  |  |
| *) The number of settings varies depending on the memory switch item. |  |  |
| *) For details on each memory switch item, and default setting number, refer to the separate " Preparation and Operation ". |  |  |

- Example

Gets the default setting for "GENERAL (0)".

| Send | Reply |
| :--- | :--- |
| MS:DEFRK, 0 | $6,0,1,1,0,1,0,0,0$ |
| No. 1 AXIS: $1+2+3$ (6) | No.6 JOG Y SEL: 2nd axis (1) |
| No.2 MODE SEL: HOST mode (0) | No.7 CMD FORMAT: SHOT / FC mode (0) |
| No.3 SLEEP SEL: ON (1) | No.8 TRG / LEV: Positive logic (0) |
| No.4 BEEP SEL: ON (1) | No.9 TRG WIDTH: $10 \mu \mathrm{sec}(0)$ |

127) PIT:DEL command (Position registration 1 : Delete)

- Description

Delete the registered location information contents.

- Command format

Send) PIT:DEL,n

- Parameters

Send) n : Location information registration number $1 \sim 20$

- Example

Delete the registration details of registration number 1.

| Send | Reply |
| :--- | :--- |
| PIT:DEL,1 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
128) PIT:SET command (Position registration 2 : Registration)

- Description

Registers the current position with the specified registration number.
*) If the power of this device is turned off, reset, or the memory switch that automatically restarts is changed, the registered position will be discarded.

- Command format

Send) PIT:SET,n

- Parameters

Send) n: Location information registration number $1 \sim 20$

- Example

Registers the current position as registration number 1.

| Send | Reply |
| :--- | :--- |
| PIT:SET,1 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
129) PIT:GET command (Position registration 3 : Get)

- Description

Get the registered location information content.
*) If the counter is set to zero after registering with the "PIT_SET:" command, the coordinate value obtained by this command will be the calculation result of the registered position and the coordinate value immediately before zero setting.

- Command format

Send) PIT:GET,n
Reply) c1,c2,c3

- Parameters

Send) n : Location information registration number $1 \sim 20$
Reply) c1: 1st axis coordinate value (unit: pls)
c2 : 2nd axis coordinate value (unit: pls)
c3: 3rd axis coordinate value (unit: pls)

- Example

Get the location of registration number 3.

| Send | Reply | Contents |
| :---: | :---: | :--- |
| PIT:GET,3 | $10000,5000,10$ | Coordinate values are registered as +10000 pls for the <br> 1st axis, +5000 pls for the 2nd axis, and +10 pls for the <br> 3rd axis. |

130) PIT:G command (Position registration 4 : Operation 1)

- Description

Moves to the position registered in the specified location information registration number.
*) Since the position is not based on the zero of the coordinate value, the registered position does not change even if the counter is set to zero.
*) If the power of this device is turned off, reset, or the memory switch that automatically restarts is changed, the registered position will be discarded.

- Command format

Send) PIT:G,n

- Parameters

Send) n : Location information registration number $1 \sim 20$

- Example

Moves to the coordinate value registered in registration number 5.

| Send | Reply |
| :--- | :--- |
| PIT:G,5 | OK or NG |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
131) PIT:GRT command (Position registration 5 : Operation order 2 : Completion reply)

- Description

It moves to the location registered in the specified location information registration number and replies to each axis after completion.
*) Since the position is not based on the zero of the coordinate value, the registered position does not change even if the counter is set to zero.
${ }^{*}$ ) If the power of this device is turned off, reset, or the memory switch that automatically restarts is changed, the registered position will be discarded.

- Command format

Send) PIT:GRT,n
Reply) r

- Parameters

Send) $n$ : Location information registration number $1 \sim 20$
Reply) $r$ : Positioning complete axis 1 or 2 or 3

- Example

Move to the position registered in registration number 5, and the operation is completed in the order of the 2nd axis and the 1st axis.

| Send | Reply | Reply after the operation is completed |
| :---: | :--- | :--- |
| PIT:GRT,5 | OK or NG | 2 |
|  |  | 1 |

[^8]132) PAV:DEL command (Coordinate value registration 1 : Delete)

- Description

The registered coordinate value information content is deleted from the main memory of the controller.

- Command format

Send) PAV:DEL,n

- Parameters

Send) n : Coordinate value information registration number $1 \sim 20$

- Example

Delete the registration details of registration number 1.

| Send | Reply |
| :--- | :--- |
| PAV:DEL,1 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
133) PAV:SET command (Coordinate value registration 2 : Registration)

- Description

Registers the current coordinate values in the controller's main memory to the specified registration number.

- Command format

Send) PAV:SET,n

- Parameters

Send) n : Coordinate value information registration number $1 \sim 20$

- Example

Register the current coordinate value in registration number 1.

| Send | Reply |
| :--- | :--- |
| PAV:SET,1 1 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
134) PAV:GET command (Coordinate value registration 3 : Get)

- Description

Get the registered coordinate value information contents from the main memory of the controller.

- Command format

Send) PAV:GET,n
Reply) c1,c2,c3

- Parameters

Send) n : Coordinate value information registration number $1 \sim 20$
Reply) c1: 1st axis coordinate value (unit: pls)
c2 : 2nd axis coordinate value (unit: pls)
c3: 3rd axis coordinate value (unit: pls)

- Example

Get the coordinate value of registration number 3.

| Send | Reply | Contents |
| :---: | :---: | :--- |
| PAV:GET,3 | $10000,5000,10$ | Coordinate values are registered as + 10000pls for <br> the 1st axis, +5000pls for the 2nd axis, and +10pls <br> for the 3rd axis. |

135) PAV:G command(Coordinate value registration 4 : Operation 1)

- Description

Moves to the position registered in the specified coordinate value information registration number.

- Command format

Send) PAV:G,n

- Parameters

Send) n : Coordinate value information registration number $1 \sim 20$

- Example

Moves to the coordinate value registered in registration number 5.

| Send | Reply |
| :--- | :--- |
| PAV: G,5 | OK or NG |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
136) PAV:GRT command (Coordinate value registration 5 : Operation 2 : Completion reply)

- Description

It moves to the position registered in the specified coordinate value information registration number, and replies for each axis after completion.

- Command format

Send) PAV:GRT,n
Reply) r

- Parameters

Send) n : Coordinate value information registration number $1 \sim 20$
Reply) $r$ : Positioning complete axis 1 or 2 or 3

- Example

Move to the coordinate value registered in registration number 5 , and the operation is completed in the order of the 2nd axis and the 1st axis.

| Send | Reply | Reply after the operation is completed |
| :---: | :--- | :--- |
| PAV:GRT,5 | OK or NG | 2 |
|  |  | 1 |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.

## User's Manual (Command) HIT Mode

## Three-axis Stage Controller

## SHRC-203

## Contents

1. Overview ..... 6
2. About double buffer ..... 6
1) List of commands using double buffer ..... 6
2) Setting command conditions .....  .7
3) About the standby command. .....  .7
4) About speed setting. .....  8
3. About replying to the setting command ..... 8
4. List of HIT mode commands ..... 9
1) *IDN? Command (Get device information). ..... 11
2) !: Command (Get positioning status 1) ..... 11
3) Q: command (Get coordinate values) ..... 12
4) $\quad Q: S$ command (Get status) ..... 12
5) ?:V command (Get setting 1: Version) ..... 13
6) $\quad$ : R command (Get setting 2: Scale resolution) ..... 13
7) ?:P command (Get setting 3 : Movement amount of 1 pulse) ..... 14
8) ?:S command (Get setting 4 : Motor driver division number) ..... 14
9) $\quad$ :AN command (Get setting 5 : Axis name) ..... 15
10) ?:D command (Get setting 6 : Movement speed setting value). ..... 16
11) $\quad$ : B command (Get setting 7 : Machine origin return speed setting value) ..... 17
12) ?:MP command (Get setting 8 : Relative movement [Prebuffer] ) ..... 18
13) ?:AP command (Get setting 9: Absolute movement [Prebuffer ]) ..... 18
14) ?:EP command (Get setting 10 : Arc interpolation [Prebuffer]) ..... 19
15) ?:KP command (Get setting 11 : Linear interpolation [Prebuffer]) ..... 19
16) ?:O command (Get setting 12 : General-purpose output status) ..... 20
17) ?:W command (Get setting 13 : Wait time) ..... 20
18) ?:WT command (Get setting 14 : Wait time) ..... 20
19) ?:WI command (Get setting 15 : General-purpose input wait) ..... 21
20) ?:N command (Get setting 16 : Model name). ..... 21
21) ?:J command (Get setting 17 : Jog motion direction) ..... 21
22) ?:ACS command (Get setting 18 : Auto-config status) ..... 22
23) ?:C command Get setting 19 : Motor excitation state) ..... 22
24) ?:F command (Get setting 20 : Stage control status). ..... 23
25) ?:SLEEP command (Get setting 21 : Sleep state) ..... 23
26) ?:BO command (Get setting 22 : The lighting status of the display) ..... 23
27) ?:MODE command (Get setting 23 : Mode) ..... 24
28) ?:FMT command (Get setting 24 : Command format) ..... 24
29) ?:BEEP command (Get setting 25 : Beep sound setting status) ..... 25
30) ?:CMD command (Get setting 26 : Previous sendcommand) ..... 25
31) ?:L command (Get setting 27 : The program execution status) ..... 25
32) ?:T command (Get setting 28 : Trigger execution status) ..... 26
33) ?:SN command (Get setting 29: Setial number) ..... 27
34) ?:AXIS command (Get setting 30: Controllable axis) ..... 27
35) PSET: command (Coordinate value preset) ..... 27
36) RESET: command (Reset execution) ..... 28
37) SLEEP: command (Sleep execution) ..... 28
38) BO: command (Display lighting operation) ..... 29
39) MODE: command (Mode change) ..... 29
40) FMT: command (Command format change) ..... 29
41) F: command (Stage control method change) ..... 30
42) C: command (Motor state change) ..... 30
43) BEC: command (Positioning incomplete and error cancellation) ..... 31
44) BEEP: command (Beep operation) ..... 31
45) S: command (Number of divisions setting) ..... 32
46) W: command (Waiting time) ..... 32
47) WT: command (Wait for specified time [prebuffer]) ..... 32
48) WI: command (General purpose input state wait [Prebuffer]) ..... 33
49) H: command (Machine origin return 1) ..... 34
50) HRT: command (Mechanical origin return 2 : Completion reply) ..... 34
51) Z: command (Logical origin return 1) ..... 35
52) ZRT: command (Logical origin return 2 : Completion reply) ..... 35
53) R: command (Logical origin setting) ..... 36
54) RC: command (Initialization of logical origin setting) ..... 36
55) L: command (Stop operation 1) ..... 37
56) L:E command (Stop operation 2 : Emergency stop) ..... 37
57) M: command (Relative movement amount setting 1 [Execution buffer]) ..... 38
58) MP: command (Relative movement amount setting 2 [Prebuffer]) ..... 39
59) A: command (Absolute coordinate value setting 1 [Execution buffer]) ..... 41
60) AP: command (Absolute coordinate value setting 2 [Prebuffer]) ..... 42
61) E:0 command (Arc interpolation 1: Perfect circle [Execution buffer]) ..... 44
62) E:1 command (Arc interpolation 2: Angle [Execution buffer]) ..... 45
63) E:2 command (Arc interpolation 3: Passing point [Execution buffer]) ..... 47
64) E:3 command (Arc interpolation 4: Perfect circle helical [Execution buffer]) ..... 48
65) 

E:4 command (Arc interpolation 5: Angle helical [Execution buffer]) ..... 50
66) E:5 command (Arc interpolation 6: Passing point helical [Execution buffer]) ..... 52
67) EP:0 command (Arc interpolation 7: Perfect circle [Prebuffer]) ..... 54
68) EP:1 command (Arc interpolation 8: Angle [Prebuffer]) ..... 56
69) EP:2 command (Arc interpolation 9: Passing point [Prebuffer]) ..... 58
70) EP:3 command (Arc interpolation 10: Perfect circle helical [Prebuffer]) ..... 60
71) EP:4 command (Arc interpolation 11: Angle helical [Prebuffer]) ..... 62
72) EP:5 command (Arc interpolation 12: Passing point helical [Prebuffer]) ..... 64
73) K: command (Linear interpolation: 1 [Execution buffer]) ..... 66
74) KP: command (Linear interpolation: 2 [Prebuffer]) ..... 67
75) J : command (Jog driving operation 1) ..... 69
76) D: command (Speed setting) ..... 69
77) JD: command (Setting for speed override during jog operation) ..... 70
78) B: command (Origin return speed setting) ..... 71
79) I: command (General-purpose IO input confirmation), ..... 72
80) O: command (General-purpose IO output command) ..... 73
81) T:T command (Trigger output 1 : Timer value specified) ..... 74
82) T:P command (Trigger output 2 : Pulse value specified) ..... 75
83) T:S command (Trigger output 3 : Pulse output prohibited) ..... 75
84) T:M command (Trigger output 4 : One-shot trigger output) ..... 76
85) T:E command (Trigger output 5: Scale pulse value specified). ..... 76
86) P:R command (Program 1 : Program mode transition) ..... 76
87) P:H command (Program 2 : Transition to host mode) ..... 77
88) P:P command (Program 3 : Program number designation) ..... 77
89) P:S command (Program 4 : Program operation: Operation start) ..... 77
90) P:O command (Program 5 : Program operation: One-line execution operation start) ..... 77
91) P:E command (Program 6 : Program operation : Stop operation) ..... 78
92) P:U command (Program 7: Program operation : Pause). ..... 78
93) P:C command (Program 8 : Program operation : Send completion signal) ..... 78
94) P:T command (Program 9 : Program operation : Send trigger signal) ..... 79
95) P:ON command (Program 10 : Shift to edit mode) ..... 79
96) P:OFF command (Program 11 : Program mode transition) ..... 79
97) P:DEL command (Program 12 : Delete program line designation) ..... 80
98) P:SET command (Program 13 : Program line designation setting) ..... 80
99) P:GET command (Program 13 : Get program line designation) ..... 98
100) P: INIT command (Program 15 : Delete all lines of the program) ..... 110
101) MS:ON command (Memory switch operation 1 : Edit mode transition) ..... 110
102) MS:OFF command (Memory switch operation 2 : Host mode transition) ..... 110
103) MS:SET command (Memory switch operation 3 : Setting) ..... 110
104) MS:GET command (Memory switch operation 4 : Get) ..... 111
105) MS:DEF command (Memory switch operation 5 : Initialization) ..... 112
106) MS:DEFR command (Memory switch operation 6 : Get the initial value) ..... 112
107) MS:SETK command (Memory switch operation command 3 : Setting command) ..... 113
108) MS:GETK command (Memory switch operation 4 : Get). ..... 114
109) MS:DEFK command (Memory switch operation 5 : Initialization) ..... 114
110) MS:DEFRK command (Memory switch operation 6 : Get the initial value) ..... 115
111) PIT:DEL command (Position registration 1 : Delete) ..... 116
112) PIT:SET command (Position registration 2 : Registration) ..... 116
113) PIT:GET command (Position registration 3 : Get) ..... 116
114) PIT:G command (Position registration 4 : Operation 1) ..... 117
115) PIT:GRT command (Position registration 5 : Operation order 2 : Completion reply) ..... 117
116) PAV:DEL command (Coordinate value registration 1 : Delete) ..... 118
117) PAV:SET command (Coordinate value registration 2 : Registration) ..... 118
118) PAV:GET command (Coordinate value registration 3 : Get) ..... 118
119) PAV:G command(Coordinate value registration 4 : Operation 1) ..... 119
120) PAV:GRT command (Coordinate value registration 5 : Operation 2 : Completion reply) 119

## 1. Overview

This document describes the command format HIT mode commands in the 3 -axis stage controller SHRC-203. To use the command format HIT mode, you need to select "HIT" with the memory switch "GENERAL"-"CMD FORMAT" or set it to "HIT" with the "FMT:" command. Before using, please understand the contents of the separate volume "Preparation and Operation".

## 2. About double buffer

In addition to the normal commands, SHRC-203 has a prebuffer command that can be sent in advance to automatically perform the next operation after the execution is completed.When the operation setting is made in the prebuffer, the prebuffer setting value is migrated to the execution buffer, the prebuffer setting value is deleted, and the operation is started with the migrated execution buffer setting value. When the execution buffer operation is completed, the prebuffer setting value is transferred to the execution buffer, the prebuffer setting value is deleted, and the operation completion character is returned.After that, the operation starts with the automatically migrated execution buffer setting value. Continuous execution is possible by setting the prebuffer between the reply of the operation completion character and the reply of the next operation completion character.If the prebuffer cannot be set during this reply, the automatic execution will end.


1) List of commands using double buffer

| Commands | Contents | Memo |
| :--- | :--- | :--- |
| MP: | Relative travel distance setting | Prebuffer settings |
| AP: | Absolute travel distance setting | Prebuffer settings |
| EP: | Circle interpolation operation | Prebuffer settings |
| KP: | Linear interpolation operation | Prebuffer settings |
| WT: | Timed wait standby |  |
| WI: | General-purpose input standby |  |

## 2) Setting command conditions

Refer to the table below for the conditions for using the setting command.

| Commands | MP: | AP: | KP: | EP: |
| :--- | :---: | :---: | :---: | :---: |
| Before the start <br> of operation | Write in <br> Overwrite |
| in operation | Write in <br> Overwrite |

If you want to change the contents of the prebuffer, set it again.


## 3) About the standby command

It is possible to set a wait condition in the prebuffer, and there are two ways to specify the wait time, one is to specify the wait time and the other is to specify the generalpurpose input status.

- Timed wait standby

It can be used by sending the WT: command to the prebuffer, set the wait time from 0.1 to 256 seconds, and wait until the specified time is reached. After waiting, if there is a registration in the prebuffer, the prebuffer setting value moves to the execution buffer and the setting value is executed.
The standby state can be canceled halfway by sending the WT: *, C command, and if there is a registration in the prebuffer, the prebuffer setting value is executed.
(* Is the axis designation)

- General-purpose input standby

It can be used by sending the WI: command to the prebuffer, set general-purpose input conditions 0 to 63, and wait until the same conditions are met. After waiting, if there is a registration in the prebuffer, the prebuffer setting value moves to the execution buffer and the setting value is executed.
By sending the WI: *, C command, the standby state can be canceled halfway, and if there is a registration in the prebuffer, the prebuffer setting value is executed.
(* Is the axis designation)
4) About speed setting

When setting the prebuffer, the speed can be set along with the operation setting values using the MP :, AP :, KP :, and EP: commands.
The speed setting of the MP: and AP: commands sets the minimum speed, maximum speed, and acceleration / deceleration time for the operation specified axis.
KP :, EP: Command speed settings set the minimum speed, maximum speed, and acceleration / deceleration time for the axis with the smallest axis number to be interpolated.

## 3. About replying to the setting command

After sending the setting command, there will be a reply with the specified characters. I will explain the contents of the reply.

| Reply | Contents |
| :--- | :--- |
| OK | A reply will be sent if the command is accepted successfully. |
| OK_D | After operating with the double buffer command, it will be returned when it <br> is normally set in the prebuffer. |
| NG | If the command is not accepted, it will be returned. <br> Make sure the command string is correct. Also, please note that each <br> command has transmission conditions. |
| NG_I | The reply will be returned if it contains NULL of ASCII code or non-ASCII <br> code characters. |


| Commands | Contents |
| :---: | :---: |
| *IDN? | Equipment information |
| !: | Acquisition of status (positioning information) |
| Q: | Get status (coordinates or his status, positioning information) |
| Q:S | Acquisition of status (status, positioning information) |
| ?: | Setting information |
| PSET: | Coordinate value preset |
| RESET: | Perform a reset |
| SLEEP: | Run and wake up sleep |
| BO: | Front panel blackout |
| MODE: | Mode change |
| F: | Change of stage control method (Close and Open) |
| C: | Change of motor state (excitation and demagnetization) |
| BEC: | Execution of positioning incompleteness and error cancellation |
| BEEP: | Beep operation |
| S: | Switching the number of divisions |
| W: | Wait time setting |
| WT: | Wait for specified time (pre-buffer setting) |
| WI: | General-purpose input state standby (pre-buffer setting) |
| H: | Perform machine origin return |
| HRT: | Execute machine origin return (complete return) |
| Z: | Executes the theory origin return |
| ZRT: | Execute logical origin return (return completion) |
| R : | Execute the theoretical origin setting (zero set) |
| L: | Operation stop and emergency stop |
| M | Relative movement setting operation (execution buffer setting) |
| MP: | Relative movement setting operation (pre-buffer setting) (completion return) |
| A: | Absolute coordinate value setting operation (execution buffer setting) |
| AP: | Absolute coordinate value setting operation (pre-buffer setting) (completion return) |
| E: | Arc interpolation setting operation (execution buffer setting) |
| EP: | Arc interpolation setting operation (pre-buffer setting) (completion return) |
| K: | Linear interpolation setting operation (execution buffer setting) |


| Commands | Contents |
| :--- | :--- |
| KP: | Linear interpolation setting operation (pre-buffer setting) (completion <br> return) |
| J: | Jog operation command |
| JD: | Jog operation (with speed override function) |
| D: | Speed setting |
| I: | Check the general-purpose input status |
| O: | Change general-purpose output status |
| T: | Trigger output |
| P: | Internal program |
| MS: | Memory switch setting |
| PIT: | Location registration |
| PAV: | Coordinate value registration |
| FMT: | Command format settings |

*) If there is a description about the memory switch, refer to the separate "Preparation and Operation".
*) "* IDN?" "?: MODE" "?: CMD" "MODE:" can be used in all operation modes (HOST, MANUAL, REMOTE, TEACH, EDIT, TEST).

1) *IDN? Command (Get device information)

- Description

Get controller information.
*) Can be used in all operation modes (HOST, MANUAL, REMOTE, TEACH, EDIT, TEST).

- Command format

Send) *IDN?
Reply) v,m,s,f

- Parameters

Reply) v: Vendor name
m : Model name
s : Serial number
f : Firmware version

- Example

| Send | Reply |
| :--- | :--- |
| ${ }^{*}$ IDN? | SIGMAKOKI,SHRC-203,2106001001,V2.00.000 |

2) !: Command (Get positioning status 1)

- Description

Acquires the positioning status.

- Command format

Send) !:a
Reply) r1,r2,r3

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
Not specified All axes specified
Reply) r1: 1st axis positioning state 0 or 1
r2: 2nd axis positioning state 0 or 1
r3: 3rd axis positioning state 0 or 1
0 Positioning of all controllable axes is complete (READY)
1 One of the controllable axes has not been positioned (BUSY)

- Example

| Send | Reply |
| :--- | :--- |
| $!:$ | $1,0,0$ |
| $!: 1$ | 1 |
| $!: 2$ | 0 |

3) Q: command (Get coordinate values)

- Description

Get the coordinate values.

- Command format

Send) Q:u
Reply) c1,c2,c3

- Parameters

Send) u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
Reply) c1: 1st axis coordinate value
c2 : 2nd axis coordinate value
c3 : 3rd axis coordinate value
*) Reply Each item is separated by (comma)

- Example

| Send | Reply |
| :--- | :--- |
| Q: | $-1000,2000,3000$ |
| Q:M | $\mathrm{M}-0.1, \mathrm{M} 0.2, \mathrm{M} 0.3$ |

4) $\mathrm{Q}:$ S command (Get status)

- Description

Get the detailed status of each axis.

- Command format

Send) Q:S
Reply) s1,s2,s3

- Parameters

Reply) s1: 1st axis status $0 \sim 1$ FFFFFF (Hexadecimal)

| s2 : 2nd axis status | $0 \sim 1$ 1FFFFFF (Hexadecimal) |
| :--- | :--- |
| s3 : 3rd axis status | $0 \sim 1$ 1FFFFFF (Hexadecimal) |

1bit Normal (S1 to S10 and emergency stop has not occurred)
2bit Command error (S8)
3bit Scale error (S1)
4bit Disconnect error (S2)
5bit Overflow error (S4)
6bit Emergency
7bit Hunting error (S3)
8bit Limit error (S5)
9bit Counter overflow error (S6)
10bit Config error (S7)
11bit 24 V IO overload warning (W1)
12bit 24V Terminal block overload warning (W2)
13bit System error (S9)
14bit Over heat warning (W3)
15bit Over heat error (S10)
16bit Out of in-position range (after positioning is completed) (READY)
17bit Out of in-position range (during positioning operation) (BUSY)
18bit Logical origin return is in progress

19bit Machine origin return is in progress
20bit CW Limit detection
21bit CCW Limit detection
22bit CW software limit stop
23bit CCW software limit stop
24bit NEAR sensor detection
25bit ORG sensor detection
bit is 1 ON
bit is 0 OFF

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| Q:S | $1,1,1$ | Memory switch "GENERAL"-"AXIS" is $1+2+3$ |
| Q:S | 1,1, | Memory switch "GENERAL"-"AXIS" is $1+2$ |

5) ?:V command (Get setting 1: Version)

- Description

Get the firmware version.

- Command format

Send) ?:V
Reply) f

- Parameters

Reply) f: Firmware version

- Example

| Send |  |
| :--- | :--- |
| $?: \mathrm{V}$ | V 2.00 .000 |

6) ?:R command (Get setting 2: Scale resolution)

- Description

Gets the scale resolution.

- Command format

Send) ?:Ra
Reply) r1,r2,r3

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
Not specified All axes specified
Reply) r1: 1st axis scale resolution (unit: nm )
r2: 2nd axis scale resolution (unit: nm)
r3: 3rd axis scale resolution (unit: nm)

- Example

| Send | Reply |
| :--- | :--- |
| ?:R | $1,10,50$ |
| ?:R1 | 1 |
| ?:R2 | 10 |

7) ?:P command (Get setting 3 : Movement amount of 1 pulse)

- Description

Acquires the movement amount of one pulse calculated from the memory switches "AXIS"-"BASE RATE" and "MOTOR DRIVER"-"DIVIDE".

- Formula

1 pulse movement amount (nm) = (BASE RATE * 10) / DIVIDE
Example : BASE RATE $=200$, DIVIDE $=2000$
(200 * 10) / $2000=1 \mathrm{~nm}$

- Command format

Send) ?:Pa
Reply) p1,p2,p3

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
Not specified All axes specified
Reply) p1: 1st axis 1 pulse movement amount (unit: nm)
p 2 : 2nd axis 1 pulse movement amount (unit: nm)
p3 : 3rd axis 1 pulse movement amount (unit: nm)

- Example

| Send | Reply |
| :--- | :--- |
| $?: \mathrm{P}$ | $1,5,10$ |
| $?: \mathrm{P} 1$ | 1 |
| $?: \mathrm{P} 2$ | 5 |

8) ?:S command (Get setting 4 : Motor driver division number)

- Description

Gets the number of divisions of the motor driver.

- Command format

Send) ?:Sa
Reply) m1,m2,m3

- Parameters

Reply) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
Not specified All axes specified

Reply) m 1 : 1st axis motor driver divisions
m 2 : 2nd axis motor driver divisions
m 3 : 3rd axis motor driver divisions

- Example

| Send |  |
| :--- | :--- |
|  | Reply |
| ?:S | $20,40,80$ |
| ?:S1 | 20 |
| ?:S2 | 40 |

9) ?:AN command (Get setting 5 : Axis name )

- Description

Memory switch "AXIS"-Acquires the setting contents (axis name) of "AXIS NAME".

- Command format

Send) ?:ANa
Reply) n1,n2,n3

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
Not specified All axes specified
Reply) $n 1$ : 1st axis axis name
n2 : 2nd axis axis name
n3 : 3rd axis axis name

$$
1 \sim 9, A \sim Z
$$

- Example

| Send | Reply |
| :--- | :--- |
| ?:AN | $1,2,3$ |
| ?:AN1 | 1 |
| ?:AN2 | 2 |

10) ?:D command (Get setting 6 : Movement speed setting value)

- Description

Acquires the operation speed at the time of command operation.

- Command format

Send) ?:Dua
Reply) s1,f1,r1,s2,f2,r2,s3,f3,r3

- Parameters

Send) u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
Not specified All axes specified
Reply) d1: 1st axis operating speed setting value
d2: 2nd axis operating speed setting value
d3 : 3rd axis operating speed setting value
Minimum speed setting range: $1 \sim 1,000,000$ (when pulse is specified)
Maximum speed setting range: $1 \sim 1,000,000$ (when pulse is specified)
Acceleration / deceleration time setting range: $1 \sim 1,000 \mathrm{mS}$

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| ?:D | $100,1000,200,200,2000,200,300,3000,300$ | Memory switch <br> "GENERAL"-"AXIS" is <br> $1+2+3$ |
| ?:D | $100,1000,200,200,2000,200,,$, | Memory switch <br> "GENERAL"-"AXIS" is <br> $1+2$ |
| ?:D1 | $100,1000,200$ |  |
| ?:D2 | $200,2000,200$ |  |
| ?:D1M | $0.001,0.01,200$ | $\mathrm{~mm} / \mathrm{S}$ designation |

11) ?:B command (Get setting 7 : Machine origin return speed setting value)

- Description

Acquires the machine origin return operation speed during command operation.

- Command format

Send) ?:Dua
Reply) s1,f1,r1,s2,f2,r2,s3,f3,r3

- Parameters

Send) u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
a: Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
Not specified All axes specified
Reply) d1: 1st axis operating speed setting value
d2: 2nd axis operating speed setting value
d3: 3rd axis operating speed setting value
Minimum speed setting range: $1 \sim 1,000,000$ (when pulse is specified)
Maximum speed setting range: $1 \sim 1,000,000$ (when pulse is specified)
Acceleration / deceleration time setting range: $1 \sim 1,000 \mathrm{mS}$

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
|  |  | Memory switch <br> ?:B |
|  | $100,1000,200,200,2000,200,300,3000,300$ | "GENERAL"-"AXIS" is |
| $1+2+3$ |  |  |

12) ?:MP command (Get setting 8 : Relative movement [Prebuffer] )

- Description

Acquires the movement amount set by the MP: command. If it is not set, ","" will be returned.

- Command format

Send) ?:MPu
Reply) m1,m2,m3

- Parameters

Send) u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
Reply) m 1 : 1st axis movement amount
(unit: pls)
m 2 : 2nd axis movement amount
(unit: pls)
m 3 : 3rd axis movement amount
(unit: pls)

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| ?:MP | $1000,2000,3000$ | Memory switch "GENERAL"-"AXIS" is $1+2+3$ |
| ?:MP | 1000,2000, | Memory switch "GENERAL"-"AXIS" is $1+2$ |
| ?:MP | $1000,, 3000$ | Memory switch "GENERAL"-"AXIS" is $1+3$ |

13) ?:AP command (Get setting 9 : Absolute movement [Prebuffer ])

- Description

Acquires the destination coordinate value set by the AP: command.If it is not set, "," will be returned.

- Command format

Send) ?:Au
Reply) m1,m2,m3

- Parameters

Send) u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
Reply) m 1 : 1st axis coordinate value
(unit: pls)
m 2 : 2nd axis coordinate value
(unit: pls)
m3: 3rd axis coordinate value
(unit: pls)

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| ?:AP | $1000,2000,3000$ | Memory switch "GENERAL"-"AXIS" is $1+2+3$ |
| ?:AP | 1000,2000, | Memory switch "GENERAL"-"AXIS" is $1+2$ |
| ?:AP | 1000,3000 | Memory switch "GENERAL"-"AXIS" is $1+3$ |

14) ?:EP command (Get setting 10 : Arc interpolation [Prebuffer])

- Description

Gets the circle interpolation setting value set by the EP: command. If it is not set, ",," will be returned.

- Command format

Send) ?:EPu
Reply) m

- Parameters

Send) u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
Reply) m : Circle interpolation setting value
(unit: pls)

- Example

| Command | Send | Reply | Memo |
| :--- | :--- | :--- | :---: |
| Perfect circle | ?:EP | $0,1,2,0,100,100$ |  |
| Angle | ?:EP | $1,1,2,0,0,0,170$ |  |
| Passing point indication | ?:EP | $2,1,2,0,0,0,100,100$ |  |
| Perfect circle helical | ?:EP | $3,1,2,3,0,1,100,100,1000$ |  |
| Command | Send | Reply | Memo |
| Angle helical | ?:EP | $4,1,2,0,0,0,170,1000$ |  |
| Passing point indication <br> helical | ?:EP | $5,1,2,3,0,0,0,100,100,1000$ |  |
| Perfect circle | ?:EP,M | $0,1,2,0,0.001,0.001$ | mm designation |

15) ?:KP command (Get setting 11 : Linear interpolation [Prebuffer])

- Description

Gets the linear interpolation setting value set by the KP: command. If it is not set, ",," will be returned.

- Command format

Send) ?:KPu
Reply) m

- Parameters

Send) u : Unit setting

$$
\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D} \text { (If there is no unit specified, it is judged as pls) }
$$

Reply) m : Linear interpolation setting value
(unit: pls)

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| $?: K P$ | $1000,2000,3000$ | Set on the 1st, 2nd, and 3rd axes |
| $?: \mathrm{KP}$ | 1000,2000, | Set on the 1st, 2nd axes |
| ?:KP | 1000,3000 | Set on the 1st, 3rd axes |
| $?: K P M$ | $0.01,0.02,0.03$ | Set on the 1st, 2nd, and 3rd axes, mm designation |

16) ?:O command (Get setting 12 : General-purpose output status)

- Description

Gets the general-purpose output status.

- Command format

Send) ?:O
Reply) o

- Parameters

Reply) o : General-purpose output status $0 \sim 63$

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| $?: O$ | 15 | OUT1 $\sim 4:$ ON OUT5,6: OFF |

*) ON means that current is flowing through the transistor of the photocoupler.
For details, refer to the separate volume " Preparation and Operation ".
17) ?:W command (Get setting 13 : Wait time)

- Description

Gets the wait time setting value.

- Command format

Send) ?:W
Reply) w

- Parameters

Reply) w : Wait time set value 0 ~ $2550 \quad$ (unit: 0.1 sec$)$

- Example

| Send | Reply | Memo |
| :---: | :--- | :--- |
| $?: W$ | 255 | 25.5 ms |

18) ?:WT command (Get setting 14 : Wait time)

- Description

Gets the wait time setting value for each axis. If it is not set, ",", will be returned.

- Command format

Send) ?:WT
Reply) w1,w2,w3

- Parameters

Reply) w1: 1st axis wait time set value 1-2550
w2 : 2nd axis wait time set value 1-2550
w3 : 3rd axis wait time set value 1-2550
(unit: 0.1 sec )
(unit: 0.1 sec )
(unit: 0.1 sec )

- Example

| Send | Reply |  |
| :--- | :--- | :--- |
| ?:WT | $255,255,255$ | Memo |

19) ?:WI command (Get setting 15 : General-purpose input wait)

- Description

Gets the settings for waiting for general-purpose input. If it is not set, ",", will be returned.

- Command format

Send) ?:WI
Reply) i1,i2,i3

- Parameters

Reply) i1: 1st axis General-purpose input wait setting $0 \sim 63$
i2 : 2nd axis General-purpose input wait setting $0 \sim 63$
i3: 3rd axis General-purpose input wait setting $0 \sim 63$

- Example

| Send | Reply |  |
| :--- | :--- | :--- |
| ?:WI | $63,63,63$ | All axis setting values (N1 $\sim 6$ are all ON ) |

*) ON means that current is flowing through the transistor of the photocoupler.
For details, refer to the separate volume " Preparation and Operation ".
20) ?:N command (Get setting 16 : Model name)

- Description

Acquires the model name of this controller.

- Command format

Send) ?:N
Reply) $n$

- Parameters

Reply) n : Model name

- Example

| Send |  |
| :--- | :--- |
| ?:N | SHRC-203 |

21) ?:J command (Get setting 17 : Jog motion direction)

- Description

J : Acquires the operation direction setting set by the command. If it is not set, "," will be returned.

- Command format

Send) ?:J
Reply) j

- Parameters

Reply) j : Operating direction setting value + or -

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| $?: J$ | ,,+-+ | Memory switch "GENERAL"-"AXIS" is $1+2+3$ |

22) ?:ACS command (Get setting 18 : Auto-config status)

- Description

Gets the current autoconfig status.

- Command format

Send) ?:ACSa
Reply) ${ }^{\text {j }}$

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
Not specified All axes specified
Reply) j : Auto-config status
0 Memory switch CONFIG OFF
1 Memory switch CONFIG is ON. Normal reading completed.
E Memory switch CONFIG is ON. Read error.
D Memory switch CONFIG is ON. Device not connected error.

- Example

| Send | Reply | Memo |
| :---: | :--- | :--- |
| ?:ACS | $1,0,1$ | When the memory switches CONFIG1 and CONFIG3 are ON and <br> CONFIG2 is OFF and read normally |
| ?:ACS | ,, 1 | Memory switch "GENERAL""-"XIS" is 3 |
| ?:ACS1 | 1 | When the memory switch CONFIG1 is ON and read normally |

23) ?:C command Get setting 19 : Motor excitation state)

- Description

Gets the current motor excitation state.

- Command format

Send) ?:Ca
Reply) j

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
Not specified All axes specified
Reply) j : Motor excitation state
0 Motor excitation OFF
1 Motor excitation ON

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| $?: C$ | $1,0,1$ | Motor excitation is ON for the 1st and 3rd axes, OFF for the 2nd axis |
| $?: C$ | , 1 | Memory switch "GENERAL"-"AXIS" is 3 |
| $?: C 1$ | 1 | Motor excitation is ON for the first axis |

24) ?:F command (Get setting 20 : Stage control status)

- Description

Gets the current stage control state.

- Command format

Send) ?:Fa
Reply) ${ }^{\text {j }}$

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
Not specified All axes specified
Reply) j : Stage control state
0 Close control state
1 Open control state

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| ?:F | $0,1,0$ | The stage control state is the 1st and 3rd axis Closed control states, <br> and the 2nd axis is Open control state. |
| ?:F | ,, 0 | Memory switch "GENERAL"-"AXIS" is 3 |
| ?:F1 | 0 | Stage control state is 1st axis Close control state |

25) ?:SLEEP command (Get setting 21 : Sleep state)

- Description

Get the sleep state.

- Command format

Send) ?:SLEEP
Reply) s

- Parameters

Reply) s: Sleep state 0 or 1
0 Wake from sleep
1 Sleeping

- Example

| Send |  |
| :---: | :--- |
| ?:SLEEP | 0 |

26) ?:BO command (Get setting 22 : The lighting status of the display)

- Description

Acquires the lighting status of the backlight and LED of the display unit.

- Command format

Send) ?:BO
Reply) I

- Parameters

Reply) I : Backlight and LED on and off 0 or 1
0 OFF
1 ON

- Example

| Send |  | Reply |
| :--- | :--- | :--- |
| ?:BO | 0 |  |

27) ?:MODE command (Get setting 23 : Mode)

- Description

Gets the current mode. The reply "HOST, PROGRAM" will be sent when the program mode is entered by the "P: R" command. "HOST, MS" will be returned when you switch to the memory switch edit mode with "MS: ON".
*) Can be used in all operation modes (HOST, MANUAL, REMOTE, TEACH, EDIT, TEST).

- Command format

Send) ?:MODE
Reply) m

- Parameters

Reply) m : Mode

HOST
HOST,PROGRAM
HOST,MS
MANUAL
REMOTE
TEACHING
EDIT
TEST

HOST mode
Program mode (in HOST mode)
Memory switch edit mode (in HOST mode)
MANUAL mode
REMOTE mode
TEACHING mode
EDIT mode
TEST mode

- Example

| Send | Reply |
| :--- | :--- |
| ?:MODE | REMOTE |

28) ?:FMT command (Get setting 24 : Command format)

- Description

Gets the current command format mode.

- Command format

Send) ?:FMT
Reply) f

- Parameters

Reply) f: Command format
SHOT_FC SHOT_FC mode
HIT HIT mdoe

- Example

| Send | Reply |
| :--- | :--- |
| ?:FMT | HIT |

29) ?:BEEP command (Get setting 25 : Beep sound setting status)

- Description

Gets the beep sound setting status.

- Command format

Send) ?:BEEP
Reply) $b$

- Parameters

Reply) b: Beep state 0 or 1
0 Beep state OFF
1 Beep state ON

- Example

| Send |  |
| ---: | :--- |
| ?:BEEP | 0 |

30) ?:CMD command (Get setting 26 : Previous sendcommand)

- Description

Acquires the command sent to the controller before sending this command.
*) Can be used in all operation modes (HOST, MANUAL, REMOTE, TEACH, EDIT, TEST).

- Command format

Send) ?:CMD
Reply) c

- Parameters

Reply) c : Forward command content

- Example

| Send |  |
| :---: | :--- |
| ?:CMD | Wi:W,C |

31) ?:L command (Get setting 27 : The program execution status)

- Description

Gets the program execution status.

- Command format

Send) ?:L
Reply) pn,pr,pl,lc1, lc2, lc3, lc4, lc5, lc6, lc7, lc8, lc9

- Parameters

Reply) pn : Program numbers $1 \sim 8$
pr: Program execution status $0 \sim 8$
0 Not executed
1 During execution
2 During PAUSE
3 During execution (one line)
4 Stop while processing
(when controllable axis and program axis selection are different)
5 Stop while processing (If an error occurs)
6 Stop while processing (When an unexpected pattern is selected)

7 Stop while processing
(When the motor excitation is OFF for the program-selected axis)
8 Stop while processing
(When the program selection axis is BUSY)

| pl : Program execution line number | $1 \sim 4000$ |
| :--- | :--- |
| Ic1 : Nest 1 Loop number | $0 \sim 65535$ |
| Ic2 : Nest 2 Loop number | $0 \sim 65535$ |
| Ic3 : Nest 3 Loop number | $0 \sim 65535$ |
| Ic4 : Nest 4 Loop number | $0 \sim 65535$ |
| Ic5 : Nest 5 Loop number | $0 \sim 65535$ |
| Ic6 : Nest 6 Loop number | $0 \sim 65535$ |
| Ic7 : Nest 7 Loop number | $0 \sim 65535$ |
| Ic8 : Nest 8 Loop number | $0 \sim 65535$ |
| Ic9 : Nest 9 Loop number | $0 \sim 65535$ |

- Example

| Send |  | Reply |
| :--- | :--- | :--- |
| ?:L | $1,1,15,0,0,0,0,0,0,0,0,0$ |  |

32) ?:T command (Get setting 28 : Trigger execution status)

- Description

Gets the trigger execution status. If it is not set, "NS" will be replied.

- Command format

Send) ?:T
Reply 1) m,a,v
Reply 2) $m, v$

- Parameters

Reply) m : Trigger execution content $0 \sim 3$
0 : PULSE (Issued every set number of pulses)
1 : TIMER (Issued every set time)
2 : SCALE PLUS
(Issued for each set number of plus direction scale pulses)
3 : SCALE MINUS (Issued for each set number of minus direction scale pulses)
a: Axis setting $1 \sim 3$
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
v : Setting value
PULSE : 2 ~ 30000pls
TIMER : $1 \sim 10000$ [0.01 sec unit]
SCALE PLUS : $\pm 2 \sim 30000$ pls
SCALE MINUS : $\pm 2 \sim 30000$ pls

- Example

| Send | Reply | Contents |
| :--- | :--- | :--- |
| ?:T | $0,1,1000$ | When the trigger execution content is PULSE, SCALE <br> PLUS, SCALE MINUS |
| ?:T | 1,20 | When the trigger execution content is TIMER |

33) ?:SN command (Get setting 29: Setial number)

- Description

Get the serial number.

- Command format

Send) ?:SN
Reply) sn

- Parameters

Reply) sn : Serial number (Example : 2106001001)

- Example

| Send |  |
| :--- | :--- |
| ?:SN | 2106001001 |

34) ?:AXIS command (Get setting 30: Controllable axis)

- Description

Acquires the setting information of the controllable axis (memory switch "GENERAL""AXIS").

- Command format

Send) ?:AXIS
Reply) a

- Parameters

Reply) a: 0 Valid only for the 1st axis
1 Valid only for the 2nd axis
2 Valid only for the 3rd axis
3 1st and 2nd axis valid
4 1st and 3rd axis valid
5 2nd and 3rd axis valid
6 1st, 2nd and 3rd axis valid

- Example

| Send | Reply | Contents |
| :---: | :--- | :--- |
| ?:AXIS | 6 | 1st, 2nd and 3rd axis valid |

35) PSET: command (Coordinate value preset)

- Description

Preset the coordinate values.

- Command format

Send) PSET:m1u1c1,m2u2c2,m3u3c3

- Parameters

Send) m 1 : 1st axis sign m 2 : 2nd axis sign

```
        m3 : 3rd axis sign
    + Is set to plus direction,-is set to minus direction
    (if there is no sign, it is judged as +)
        u1: 1st axis unit designation
        u2 : 2nd axis unit designation
        u3: 3rd axis unit designation
    N / U / M / D (If there is no unit specified, it is judged as pls)
        c1: 1st axis coordinate value
        c2 : 2nd axis coordinate value
        c3: 3rd axis coordinate value
    Setting range : 0 ~ 999,999,999 (In the case of pulse)
    - Example
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Send } & \multicolumn{1}{c|}{ Reply } & \multicolumn{1}{c|}{ Memo } \\
\hline PSET:1000,, & OK or NG & 1st axis designation \\
\hline PSET:M0.01,,M0.03 & OK or NG & 1st and 3rd axis designation \\
\hline PSET:1000,2000,3000 & OK or NG & All axes designation \\
\hline
\end{tabular}
*) In the case of Busy, it will be "NG" and this command cannot be executed.
36) RESET: command (Reset execution)
- Description
Reboot the controller.
- Command format
Send) RESET:
- Example
\begin{tabular}{|r|l|}
\hline Send & \\
\hline RESET: & OK or NG \\
\hline
\end{tabular}
37) SLEEP: command (Sleep execution)
- Description
Toggle sleep state.
- Command format
Send) SLEEP:s
- Parameters
Send) s: Sleep state
0 or 1
0 Wake from sleep
1 Go to sleep
- Example
\begin{tabular}{|c|ll|}
\hline Send & & Reply \\
\hline SLEEP:1 & OK or NG & \\
\hline
\end{tabular}
*) In the case of Busy, it will be "NG" and this command cannot be executed.
*) If the position shifts during sleep with the CLOSE setting, it will return to the position before sleep when returning from the sleep state.
```

38) BO: command (Display lighting operation)

- Description

Switches the lighting status of the backlight and LED of the display unit.

- Command format

Send) BO:I

- Parameters

Send) I : Turn off or turn on the backlight and LED 0 or 1
0 OFF
1 ON

- Example

| Send |  | Reply |
| :---: | :--- | :--- |
| BO:1 | OK or NG |  |

${ }^{\text {*) }}$ In the case of Busy, it will be "NG" and this command cannot be executed.
39) MODE: command (Mode change)

- Description

Change the mode.
${ }^{*}$ ) Can be used in all operation modes (HOST, MANUAL, REMOTE, TEACH, EDIT, TEST).

- Command format

Send) MODE:m

- Parameters

Send) $m$ : Change destination mode

| HOST | HOST mode |
| :--- | :--- |
| MANUAL | MANUAL mode |
| REMOTE | REMOTE mode |
| TEACHING | TEACHING mode |
| EDIT | EDIT mode |
| TEST | TEST mode |

- Example

| Send | Reply |
| :---: | :--- |
| MODE:MANUAL | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
40) FMT: command (Command format change)

- Description

Change the command format.

- Command format

Send) FMT:f

- Parameters

Send) f: Command format
SHOT_FC SHOT_FC mode
HIT HIT mode

- Example

| Send |  |
| :--- | :--- |
| FMT:HIT | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
41) F: command (Stage control method change)

- Description

Change the stage control method.

- Command format

Send) F:f1,f2,f3

- Parameters

Send) f1: 1st axis control method
f2: 2nd axis control method
f3: 3rd axis control method
0 Close control state
1 Open control state

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| F: $0,0,0$ | OK or NG | All axes designation |
| F:0,0, | OK or NG | 1st and 2nd axis designation |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
42) C: command (Motor state change)

- Description

Change the motor status.

- Command format

Send) C:c1,c2,c3

- Parameters

Send) c1 : 1st axis motor excitation state
c2 : 2nd axis motor excitation state
c3: 3rd axis motor excitation state
0 Excitation state OFF
1 Excitation state ON

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| C:1,1,1 | OK or NG | All axes designation |
| C:1,1, | OK or NG | 1st and 2nd axis designation |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
43) BEC: command (Positioning incomplete and error cancellation)

- Description

Clears the positioning incomplete state (BUSY) and the error.
*) Can be canceled: Limit error / Overflow error / Emergency stop

- Command format

Send) BEC:b1,b2,b3

- Parameters

Send) b1: 1st axis release
b2 : 2nd axis release
b3 : 3rd axis release
0 No release
1 Release

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| BEC:1,1,1 | OK or NG |  |
| BEC:1,1,0 | OK or NG | 1st and 2nd axis designation, 3rd no release |
| BEC:1,1, | OK or NG | 1st and 2nd axis designation |

44) BEEP: command (Beep operation)

- Description

Switches whether or not to make a beep sound.

- Command format

Send) BEEP:b

- Parameters
Send) b: Beep state
0 or 1

$$
\begin{array}{ll}
0 & \text { Beep OFF } \\
1 & \text { Beep ON }
\end{array}
$$

- Example

| Send |  |
| ---: | :--- |
| BEEP:0 | OK or NG |

${ }^{\text {*) }}$ In the case of Busy, it will be "NG" and this command cannot be executed.
45) S: command (Number of divisions setting)

- Description

Set the number of divisions of the motor driver.
*) When the power is turned on, the value of the memory switch "MOTOR DRIVER"-"DIVIDE" is set.
*) If the memory switch "AXIS"-"CONFIG" is ON, this command is invalid.

- Command format

Send) S:m1,m2,m3

- Parameters

Send) m 1 : 1st axis motor driver division
m 2 : 2nd axis motor driver division
m3 : 3rd axis motor driver division
$1,2,3,4,5,6,8,10,12,20,25,30,40,50,60,80,100$, $120,125,200,250,300,400,600,800,1000,2000,4000,8000$
*) If the number of divisions is other than the above, a command error will occur.

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| S:100,200,400 | OK or NG | All axes designation |
| S:100,200, | OK or NG | 1st and 2nd axis designation |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
46) W: command (Waiting time)

- Description

Set the waiting time until READY is reached after determining that positioning is complete.

- Command format

Send) W:w

- Parameters

Send) w : Waiting time $\quad 0 \sim 2550 \quad$ (0.1sec unit)

- Example

| Send |  | Reply |
| :---: | :--- | :--- |
| W:255 | OK or NG |  |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
47) WT: command (Wait for specified time [prebuffer])

- Description

This is a prebuffer command that waits for a specified time. If a waiting time is set in the
W: command, the waiting process of this command starts after the waiting time has elapsed. If " 0 " is specified, the running timer operation is stopped.
${ }^{*}$ ) This command can be used only when the double buffer function is enabled.
For details, refer to " 2 . About the double buffer".

- Command format

Send) WT:w1,w2,w3

- Parameters

Send) w1: 1st axis waiting time

> w2 : 2nd axis waiting time
w3 : 3rd axis waiting time

$$
0 \sim 2550 \quad \text { (0.1sec unit) }
$$

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| WT:255,255,255 | OK or NG | All axes designation |
| WT:255,255, | OK or NG | 1st and 2nd axis designation |

*) This command was sent while the operation was being executed by the "H:", "HRT:", "Z:", "ZRT:", "M:", "A:", "E:", "K:", and "J:" commands. In that case, it cannot be set as a double buffer and will be "NG".
48) WI: command (General purpose input state wait [Prebuffer])

- Description

This is a prebuffer command that waits until the specified general-purpose input is set.
*) This command can be used only when the double buffer function is enabled.
For details, refer to " 2 . About the double buffer".

- Command format

Send) WI:i1,i2,i3

- Parameters

Send) i1: 1st axis general-purpose input

> i2 : 2nd axis general-purpose input
i3: 3rd axis general-purpose input 0 to 63
C Cancel waiting

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| WI:63,63,63 | OK or NG | All axes designation (All effective axes IN1-6: ON) |
| WI:1,2, | OK or NG | 1st and 2nd axis designation <br> (1st axis IN1: ON IN2-6: OFF) <br> (2nd axis IN2: ON IN1,3-6: OFF) |

*) ON means that current is flowing through the transistor of the photocoupler. For details, refer to the separate volume " Preparation and Operation ".
*) This command was sent while the operation was being executed by the "H:", "HRT:", "Z:", "ZRT:", "M:", "A:", "E:", "K:", and "J:" commands. In that case, it cannot be set as a double buffer and will be "NG".
49) H: command (Machine origin return 1)

- Description

Performs mechanical origin return. After completion, the coordinate values will be reset to zero. The operating speed follows the setting of the "B:" command.

- Command format

Send) Hm:01,02,03

- Parameters

Send) $m$ : Origin return method designation 0 or 1 or 2 or 3 or 4 or unspecified
0 MARK
1 MINI
2 MIDDLE
3 ORGS
4 NORMAL
Unspecified Execute with memory switch setting
01 : 1st axis return execution
o2: 2nd axis return execution
03 : 3rd axis return execution
0 Do not perform a return
1 Perform a return

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| $\mathrm{H}: 1,1,1$ | OK or NG | All axes designation |
| $\mathrm{H} 0: 1,1,1$ | OK or NG | MARK method designation |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
50) HRT: command (Mechanical origin return 2 : Completion reply)

- Description

The machine origin is returned, and after completion, there will be a reply for each axis.
After completion, the coordinate values will be reset to zero. The operating speed follows the setting of the " $\mathrm{B}:$ " command.

- Command format

Send) HRTm:01,02,03
Reply) $r$

- Parameters

Send) m : Origin return method designation 0 or 1 or 2 or 3 or 4 or unspecified
0 MARK
1 MINI
2 MIDDLE
3 ORGS
4 NORMAL
Unspecified Execute with memory switch setting
01: 1st axis return execution
02 : 2nd axis return execution
03 : 3rd axis return execution
0 Do not perform a return
1 Perform a return

Reply) $r$ : Positioning complete axis $\quad 1$ or 2 or 3

- Example

| Send | Reply | Reply after the operation <br> is completed | Memo |
| :--- | :--- | :--- | :--- |
| HRT:1,1,1 | OK or NG | 1 and 2,3 | All axes designation |
| HRT:1,1,0 | OK or NG | 1 and 2 | 1st and 2nd axis designation |
| HRT0:1,1,1 | OK or NG | 1 and 2,3 | MARK method designation |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
51) Z: command (Logical origin return 1)

- Description

Move $\sim$ the position of the logical origin " 0 ". The operating speed follows the setting of the "D:" command.

- Command format

Send) Z:01,o2,o3

- Parameters

Send) 01: 1st axis return execution
02 : 2nd axis return execution
03 : 3rd axis return execution
0 Do not perform a return
1 Perform a return

- Example

| Send | Reply | Memo |
| :--- | :---: | :---: |
| $Z: 1,1,1$ | OK or NG | All axes designation |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
52) ZRT: command (Logical origin return 2 : Completion reply)

- Description

Move to the position of the logical origin " 0 ", and after completion, there will be a reply for each axis. The operating speed follows the setting of the "D:" command.

- Command format

Send) ZRT:01,o2,o3
Reply) $r$

- Parameters

Send) o1: 1st axis return execution
02 : 2nd axis return execution
03: 3rd axis return execution
0 Do not perform a return
1 Perform a return
Reply) $r$ : Positioning complete axis 1 or 2 or 3

- Example

| Send | Reply | Reply after the operation <br> is completed | Memo |
| :---: | :--- | :--- | :--- |
| ZRT:1,1,1 | OK or NG | 1 and 2, 3 | All axes designation |
| ZRT:1,1,0 | OK or NG | 1 and 2 | 1st and 2nd axis designation |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
53) R: command (Logical origin setting)

- Description

Reset the coordinate value to " 0 ".

- Command format

Send) R:01,02,03

- Parameters

Send) 01 : 1st axis origin setting
02: 2nd axis origin setting
03 : 3rd axis origin setting
0 Do not perform origin setting
1 Perform origin setting

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| R:1,1,1 | OK or NG | All axes designation |
| R:1,1,0 | OK or NG | 1st and 2nd axis designation |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
54) RC: command (Initialization of logical origin setting)

- Description

Cancels the logical origin setting. For example, if you set zero at the position of the coordinate value +1000 with the "R: command", move it to the position of the coordinate
value +500 , and then execute this command, the current coordinate value will be 1500 .

- Command format

Send) RC:r1,r2,r3

- Parameters

Send) 01 : 1st axis initialization
02 : 2nd axis initialization
03: 3rd axis initialization
0 No initialization
1 Initialization

- Example

|  | Send | Reply |
| :--- | :--- | :--- |
| RC:1,1,1 | OK or NG | All axes designation |
| RC:1,1,0 | OK or NG | 1st and 2nd axis designation |

[^9]55) L: command (Stop operation 1)

- Description

Decelerate and stop the stage.

- Command format

Send) L:a1,a2,a3

- Parameters

Send) 01 : 1st axis stop execution
02 : 2nd axis stop execution
०3:3rd axis stop execution
0 No stop execution
1 Stop execution

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| L:1,1,1 | OK or NG | All axes designation |
| L:1,1,0 | OK or NG | 1st and 2nd axis designation |

*) In the case of the motor excitation is OFF, it will be "NG" and this command cannot be executed.
56) L:E command (Stop operation 2 : Emergency stop)

- Description

Immediately stop the stages of all axes and put them in an emergency stop state.
The excitation of the motor in case of emergency stop depends on the memory switch
"AXIS"-"EMG MT EXCT*".
To cancel, send the "BEC:" command.

- Command format

Send) L:E

- Example

| Send |  | Reply |
| :--- | :--- | :--- |
| L:E | OK or NG |  |

57) M: command (Relative movement amount setting 1 [Execution buffer])

- Description

It is a command to set the movement axis, movement direction, and relative movement amount and operate the relative value. The operation is acceleration / deceleration drive.
The operating speed follows the setting of the "D:" command.

- Command format

Send) M:m1u1c1,m2u2c2,m3u3c3

- Parameters

Send) m 1 : 1st axis sign
m2: 2nd axis sign
m3: 3rd axis sign

+ Is set to plus direction,-is set to minus direction
(if there is no sign, it is judged as +)
u1: 1st axis unit designation
u2 : 2nd axis unit designation
u3: 3rd axis unit designation
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
c1: 1st axis set movement amount
c2 : 2nd axis set movement amount
c3 : 3rd axis set movement amount
Setting range : 0 ~ 999,999,999 (In the case of pulse)
- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| M:1000,-2000,3000 | OK or NG | 1000 pulse movement in the 1st axis + <br> direction, -2000 pulse movement in the 2nd <br> axis + direction, 3000 pulse movement in the <br> 3rd axis + direction |
| M:1000,,3000 | OK or NG | 1000 pulse movement in the 1st axis + <br> direction, 3000 pulse movement in the 3rd <br> axis + direction |
| M:M0.01,-M0.02,M0.03 | OK or NG | 0.01mm movement in the 1st axis + direction, <br> -0.02 mm movement in the 2nd axis + <br> direction, 0.03mm movement in the 3rd axis + <br> direction |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
58) MP: command (Relative movement amount setting 2 [Prebuffer])

- Description

This command sets the movement axis, movement direction, relative movement amount, and movement speed, and operates relative values. The operation is acceleration / deceleration drive. If the operation speed setting is omitted, the setting of the "D:" command is followed.
*) This command can be used with the double buffer function. For details, refer to " 2 . About the double buffer".

- Command format

Send) MP:m1u1c1,m2u2c2,m3u3c3,s1,f1,r1,s2,f2,r2,s3,f3,r3

- Parameters

Send) m 1 : 1st axis sign
m 2 : 2nd axis sign
m3 : 3rd axis sign

+ Is set to plus direction,-is set to minus direction
(if there is no sign, it is judged as +)
u1: 1st axis unit designation
u2: 2nd axis unit designation
u3: 3rd axis unit designation
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
c1: 1st axis set movement amount
c2: 2nd axis set movement amount
c3 : 3rd axis set movement amount
Setting range : 0 ~ 999,999,999 (In the case of pulse)
s1: 1st axis minimum speed setting
s2: 2ndt axis minimum speed setting
s3: 3rd axis minimum speed setting
Setting range: $1 \sim 1,000,000 \mathrm{pls} / \mathrm{s}$
s1: 1st axis maximum speed setting
s2: 2nd axis maximum speed setting
s3: 3rd axis maximum speed setting
Setting range: $1 \sim 1,000,000 \mathrm{pls} / \mathrm{s}$
(Please set it above the minimum speed)
$r 1$ : 1st axis acceleration / deceleration time setting
r2: 2nd axis acceleration / deceleration time setting
r3: 3rd axis acceleration / deceleration time setting
Setting range: $1 \sim 1,000 \mathrm{~ms}$
- Example

| Send | Reply | Memo |
| :---: | :---: | :---: |
| MP:1000,, | $\begin{array}{ll} \hline \text { OK } & \text { or } \\ \text { OK_D } & \text { or } \\ \text { NG } & \end{array}$ | 1st axis + direction 1000 pulse movement, The operating speed is the set value of the memory switch "SPEED" or the set value of the set "D:" command. |
| $\begin{aligned} & \text { MP:1000,, } \\ & , 100,1000,50 \end{aligned}$ ,, , , | $\begin{array}{ll} \hline \text { OK } & \text { or } \\ \text { OK_D } & \text { or } \\ \mathrm{NG} & \\ \hline \end{array}$ | 1st axis + direction 1000 pulse movement, minimum speed $100 \mathrm{pls} / \mathrm{s}$, maximum speed $1000 \mathrm{pls} / \mathrm{s}$, acceleration / deceleration time 50 ms |
| $\begin{aligned} & \text { MP:1000,2000, } \\ & , 100,1000,50 \\ & , 200,2000,100 \end{aligned}$ | $\begin{array}{ll} \hline \text { OK } & \text { or } \\ \text { OK_D } & \text { or } \\ \text { NG } & \end{array}$ | 1st axis + direction 1000 pulse movement, minimum speed $100 \mathrm{pls} / \mathrm{s}$, maximum speed $1000 \mathrm{pls} / \mathrm{s}$, acceleration / deceleration time 50 ms , 2nd axis + direction 2000 pulse movement, minimum speed $200 \mathrm{pls} / \mathrm{s}$, maximum speed 2000pls/s, acceleration / deceleration time 100 ms |
| $\begin{aligned} & \text { MP:1000,,3000 } \\ & , 100,1000,50 \\ & , ’, \prime 300,3000,150 \\ & \hline, \end{aligned}$ | $\begin{array}{ll} \text { OK } & \text { or } \\ \text { OK_D } & \text { or } \\ \text { NG } & \end{array}$ | 1st axis + direction 1000 pulse movement, minimum speed $100 \mathrm{pls} / \mathrm{s}$, maximum speed $1000 \mathrm{pls} / \mathrm{s}$, acceleration / deceleration time 50 ms , 3rd axis + direction 3000 pulse movement, minimum speed $300 \mathrm{pls} / \mathrm{s}$, maximum speed $3000 \mathrm{pls} / \mathrm{s}$, acceleration / deceleration time 150 ms |
| $\begin{aligned} & \text { MP:M0.01,-- } \\ & \text { M0.02,M0.03 } \\ & , 0.001,0.01,100 \\ & , 0.002,0.02,200 \\ & , 0.003,0.03,300 \end{aligned}$ | $\begin{array}{ll} \text { OK } & \text { or } \\ \text { OK_D } & \text { or } \\ \text { NG } & \end{array}$ | 1st axis + direction 0.01 mm movement, minimum speed $0.001 \mathrm{~mm} / \mathrm{s}$, maximum speed $0.01 \mathrm{~mm} / \mathrm{s}$, acceleration / deceleration time 100 ms , 2nd axis + direction 0.02 mm movement, minimum speed $0.002 \mathrm{~mm} / \mathrm{s}$, maximum speed $0.02 \mathrm{~mm} / \mathrm{s}$, acceleration / deceleration time 200 ms , 3rd axis + direction 0.03 mm movement, minimum speed $0.003 \mathrm{~mm} / \mathrm{s}$, maximum speed $0.03 \mathrm{~mm} / \mathrm{s}$, acceleration / deceleration time 300 ms |

*) In the case of the motor excitation is OFF, it will be "NG" and this command cannot be executed.
*) This command was sent while the operation was being executed by the "H:", "HRT:", "Z:", "ZRT:", "M:", "A:", "E:", "K:", and "J:" commands. In that case, it cannot be set as a double buffer and will be "NG".
59) A: command (Absolute coordinate value setting 1 [Execution buffer])

- Description

It is a command to set the movement axis, movement direction, and movement position and operate in absolute value. The operation is acceleration / deceleration drive. The operating speed follows the setting of the " $\mathrm{D}:$ " command.

- Command format

Send) A:m1u1c1,m2u2c2,m3u3c3

- Parameters

Send) m 1 : 1st axis sign
m2: 2nd axis sign
m3: 3rd axis sign

+ Is set to plus direction,-is set to minus direction
(if there is no sign, it is judged as +)
u1: 1st axis unit designation
u2: 2nd axis unit designation
u3: 3rd axis unit designation
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
c1: 1st axis coordinate value
c2 : 2nd axis coordinate value
c3: 3rd axis coordinate value
Setting range : 0 ~ 999,999,999 (In the case of pulse)
- Example1

| Send | Reply | Memo |
| :--- | :--- | :--- |
| A:1000,-2000,3000 | OK or NG | Move to the position of 1000 pulses in the 1st axis <br> + direction, -2000 pulses in the 2nd axis + direction, <br> 3000 pulses in the 3rd axis + direction. |
| A:1000,,3000 | OK or NG | Move to the position of 1000 pulses in the 1st axis <br> + direction and 3000 pulses in the 3rd axis + <br> direction. |
| A:M0.01,-M0.02,M0.03 | OK or NG | Move to the position of 0.01 mm in the 1st axis + <br> direction, -0.02 mm in the 2nd axis + direction, and |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
60) AP: command (Absolute coordinate value setting 2 [Prebuffer])

- Description

It is a command to set the movement axis, movement direction, movement position, and operation speed and make it operate absolutely. The operation is acceleration / deceleration drive. If the operation speed setting is omitted, the setting of the "D:" command is followed.
*) This command can be used with the double buffer function. For details, refer to "2. About the double buffer".

- Command format

Send) AP:m1u1c1,m2u2c2,m3u3c3,s1,f1,r1,s2,f2,r2,s3,f3,r3

- Parameters

Send) m 1 : 1st axis sign
m 2 : 2nd axis sign
m3: 3rd axis sign

+ Is set to plus direction,-is set to minus direction
(if there is no sign, it is judged as +)
u1: 1st axis unit designation
u2 : 2nd axis unit designation
u3: 3rd axis unit designation
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
c1: 1st axis coordinate value
c2 : 2nd axis coordinate value
c3: 3rd axis coordinate value
Setting range : 0 ~ 999,999,999 (In the case of pulse)
s1: 1st axis minimum speed setting
s2: 2ndt axis minimum speed setting
s3: 3rd axis minimum speed setting
Setting range: $1 \sim 1,000,000 \mathrm{pls} / \mathrm{s}$
s1: 1st axis maximum speed setting
s2: 2nd axis maximum speed setting
s3:3rd axis maximum speed setting
Setting range: $1 \sim 1,000,000 \mathrm{pls} / \mathrm{s}$
(Please set it above the minimum speed)
r1: 1st axis acceleration / deceleration time setting
r2: 2nd axis acceleration / deceleration time setting
r3: 3rd axis acceleration / deceleration time setting
Setting range: $1 \sim 1,000 \mathrm{~ms}$


## - Example

| Send | Reply | Memo |
| :---: | :---: | :---: |
| AP:1000,, | $\begin{aligned} & \text { OK or } \\ & \text { OK_D or } \\ & \mathrm{NG} \end{aligned}$ | Move to the position of 1000 pulses in the 1st axis + direction. The operating speed is the set value of the memory switch "SPEED" or the set value of the set "D:" command. |
| $\begin{aligned} & \text { AP:1000,, } \\ & , 100,1000,50 \\ & ,, \ldots, \ldots \end{aligned}$ | $\begin{aligned} & \text { OK or } \\ & \text { OK_D or } \\ & \mathrm{NG} \end{aligned}$ | Move to the position of 1000 pulses in the 1st axis + direction. The minimum operating speed is $100 \mathrm{pls} / \mathrm{s}$, the maximum speed is $1000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time is 50 ms . |
| $\begin{aligned} & \text { AP:1000,2000, } \\ & , 100,1000,50 \\ & , 200,2000,100 \end{aligned}$ | $\begin{aligned} & \text { OK or } \\ & \text { OK_D or } \\ & \mathrm{NG} \end{aligned}$ | Move to the position of 1000 pulses in the 1st axis + direction. The minimum operating speed is $100 \mathrm{pls} / \mathrm{s}$, the maximum speed is $1000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time is 50 ms . Move to the position of 2000 pulses in the 2nd axis + direction. The minimum operating speed is $200 \mathrm{pls} / \mathrm{s}$, the maximum speed is $2000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time is 100 ms . |
| $\begin{aligned} & \text { AP:1000,,3000 } \\ & , 100,1000,50 \\ & , ’, \\ & , 300,3000,150 \end{aligned}$ | $\begin{aligned} & \text { OK or } \\ & \text { OK_D or } \\ & \text { NG } \end{aligned}$ | Move to the position of 1000 pulses in the 1st axis + direction. The minimum operating speed is $100 \mathrm{pls} / \mathrm{s}$, the maximum speed is $1000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time is 50 ms . <br> Move to the position of 3000 pulses in the 3rd axis + direction. The minimum operating speed is $300 \mathrm{pls} / \mathrm{s}$, the maximum speed is $3000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time is 150 ms . |
| AP:M0.01,M0.02,M0.03 ,0.001,0.01,100 ,0.002,0.02,200 ,0.003,0.03,300 | $\begin{aligned} & \text { OK or } \\ & \text { OK_D or } \\ & \mathrm{NG} \end{aligned}$ | Moved to the position of 0.01 mm in the 1 st axis + direction. The minimum operating speed is 0.001 $\mathrm{mm} / \mathrm{s}$, the maximum speed is $0.01 \mathrm{~mm} / \mathrm{s}$, and the acceleration / deceleration time is 100 ms . Moved to the position of 0.02 mm in the 2nd axis + direction. The minimum operating speed is 0.002 $\mathrm{mm} / \mathrm{s}$, the maximum speed is $0.02 \mathrm{~mm} / \mathrm{s}$, and the acceleration / deceleration time is 200 ms . Move to the position of 0.03 mm in the 3rd axis + direction. The minimum operating speed is $0.003 \mathrm{~mm} / \mathrm{s}$, the maximum speed is $0.03 \mathrm{~mm} / \mathrm{s}$, and the acceleration / deceleration time is 300 ms . |

*) In the case of the motor excitation is OFF, it will be "NG" and this command cannot be executed.
*) This command was sent while the operation was being executed by the "H:", "HRT:", "Z:", "ZRT:", "M:", "A:", "E:", "K:", and "J:" commands. In that case, it cannot be set as a double buffer and will be "NG".
61) E:0 command (Arc interpolation 1: Perfect circle [Execution buffer])

- Description

This command sets and operates the movement axis, rotation direction, and center coordinates of the circle interpolation operation (perfect circle).
*) The interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed for the axis with the smaller axis number.
*) The distance traveled per pulse must be the same between the interpolation axes.
If they are different, the correct interpolation operation will not be performed.

- Command format

Send) E:0,a,b,d,muc1,muc2

- Parameters

Send) a : Circle axis setting
b: Circle axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
*) Set different axes for $a, b$, and $h$.
*) For a , set the younger axis for b .
d : Rotation direction setting
0 CW rotation (Clockwise)
1 CCW rotation (Counterclockwise)
m : Sign + or-(If there is no sign, it will be "+")
u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
c1,c2 : Center coordinate setting
(relative position from the current position)
(c1: Set value of the axis with a small axis number (X axis))
(c2: Set value of the axis with a large axis number (Y axis))
Center coordinates setting range
No specified Setting range: 0 ~ 999,999,999 (Uint : pls)
N Setting range : Value of pls converted to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
$\cup$ Setting range : Value of pls converted to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
$M$ Setting range : Value of pls converted to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )

## - Example

The operation of drawing a circle clockwise from the current position on the stage of the 1st and 2 nd axes to the current position centering on the relative position from the current position (1st axis 0.05 mm , 2nd axis -0.05 mm ).

| Send | Reply |
| :--- | :--- |
| E:0,1,2,0,M0.05,-M0.05 | OK or NG |

${ }^{*}$ ) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.

62) E:1 command (Arc interpolation 2: Angle [Execution buffer])

- Description

It is a command to set and operate the movement axis, rotation direction, center coordinates, and end point angle (deg) of the arc interpolation operation.
*) The interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed for the axis with the smaller axis number.
*) An error will occur because the end point coordinates are calculated. Please use it after confirming it with the actual machine.
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) E:1,a,b,d,muc1,muc2,ae

- Parameters

Send) a : Circle axis setting
b : Circle axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
*) Set different axes for $\mathrm{a}, \mathrm{b}$, and h .
*) For $a$, set the younger axis for $b$.
d: Rotation direction setting
0 CW rotation (Clockwise)
1 CCW rotation (Counterclockwise)
m : Sign + or-(If there is no sign, it will be " + ")
u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
c1,c2 : Center coordinate setting (relative position from the current position)
(c1: Set value of the axis with a small axis number (X axis))
(c2: Set value of the axis with a large axis number (Y axis))
Center coordinates setting range
No specified Setting range : 0~999,999,999 (Unit: pls)
N Setting range : Value of pls converted to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
U Setting range : Value of pls converted to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
M Setting range : Value of pls converted to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
ae : End point angle (deg) setting (Setting range : $0^{\circ}<$ ae $\leqq 360^{\circ}$ )

- Example

On the 1st and 3rd axis stages, an arc is drawn in the CW direction from the current position to the end point angle of $90^{\circ}$ around the relative position from the current position (1st axis +100 pls , 3rd axis -200pls).

| Send | Reply |
| :--- | :--- |
| $\mathrm{E}: 1,1,3,0,+100,-200,90$ | OK or NG |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.

63) E:2 command (Arc interpolation 3: Passing point [Execution buffer])

- Description

It is a command to set and operate the movement axis, passing point coordinates, and end point coordinates of the arc interpolation operation.
*) The interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed for the axis with the smaller axis number.
*) An error will occur because the center coordinates are calculated. Please use it after confirming it with the actual machine.
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) E:2,a,b,d,mup1,mup2,mue1,mue2

- Parameters

Send) a : Circle axis setting
b: Circle axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
*) Set different axes for $\mathrm{a}, \mathrm{b}$, and h .
${ }^{*}$ ) For a, set the younger axis for $b$.
d : Rotation direction setting
0 CW rotation (Clockwise)
1 CCW rotation (Counterclockwise)
m : Sign + or-(If there is no sign, it will be " + ")
u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
p1,p2 : Passing point coordinate setting
(relative position from the current position)
( p 1 : Set value of the axis with a small axis number (X axis))
(p2: Set value of the axis with a large axis number ( Y axis))
e1,e2 : End point coordinate setting
(relative position from the current position)
(e1: Set value of the axis with a small axis number (X axis))
(e2: Set value of the axis with a large axis number ( Y axis))
Passing point coordinates, ending point coordinates Setting range No specified Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value of pls converted to nm (Example: N1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ ) $U$ Setting range : Value of pls converted to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ ) M Setting range : Value of pls converted to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ ) *) If the passing point coordinates, end point coordinates and current position are on a straight line, an arc cannot be specified, so "NG" is returned.

## - Example

The operation of drawing an arc from the current position to the end point coordinates (1st axis $+0.08 \mathrm{~mm}, 2 \mathrm{nd}$ axis +0.12 mm ) via the passing point coordinates (1st axis +0.05 mm , 2 nd axis +0.03 mm ) on the 1 st and 2 nd axis stages.

| Send | Reply |
| :--- | :--- |
| $\mathrm{E}: 2,1,2,1, \mathrm{M} 0.05, \mathrm{M} 0.03, \mathrm{M} 0.08, \mathrm{M} 0.12$ | OK or NG |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.

64) E:3 command (Arc interpolation 4: Perfect circle helical [Execution buffer])

- Description

This command sets and operates the movement axis, rotation direction, center coordinates of the arc interpolation operation (perfect circle) and the movement destination coordinates of the linear operation axis synchronized with the arc interpolation operation.
*) The interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed for the axis with the smaller axis number.
*) The distance traveled per pulse must be the same between the interpolation axes.
If they are different, the correct interpolation operation will not be performed.

- Command format

Send) E:3,a,b,h,d,n,muc1,muc2,muz

- Parameters

Send) a : Circle axis setting
b: Circle axis setting
h : Helical axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
*) Set different axes for $a, b$, and $h$.
*) For $a$, set the younger axis for $b$.
d : Rotation direction setting
0 CW rotation (clockwise)
1 CCW rotation (counterclockwise)
n : Rotation value
1 ~ 1000
m : Sign + or-(If there is no sign, it will be "+")
u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
c1,c2 : Center coordinate setting
(relative position from the current position)
(c1: Set value of the axis with a small axis number (X axis))
(c2: Set value of the axis with a large axis number (Y axis))
z : Linear movement amount setting
(movement amount per rotation from the current position)
For example, if the number of rotations is specified as 2 rotations and the linear movement amount setting is 100pls, the total linear movement amount will be 200pls.

No specified Setting range : $0 \sim 999,999,999$ (Unit: pls)
N Setting range : Value of pls converted to nm (Example: N1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
U Setting range : Value of pls converted to $\mu \mathrm{m}$
(Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
M Setting range : Value of pls converted to mm
(Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )

## - Example

Relative coordinates (3rd axis 2000pls) while drawing a circle clockwise from the current position to the current position around the relative coordinates (1st axis Opls, 2nd axis 5000pls) on the 1st and 2nd axis stages) Is the destination of the linear motion synchronized with the arc interpolation.

| Send | Reply |
| :--- | :--- |
| $\mathrm{E}: 3,1,2,3,0,1,0,5000,2000$ | OK or NG |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.

65) E:4 command (Arc interpolation 5: Angle helical [Execution buffer])

## - Description

This command sets and operates the movement axis, rotation direction, center coordinates, end point angle (deg) of the arc interpolation operation and the movement destination coordinates of the linear operation axis synchronized with the arc interpolation operation.
*) The interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed for the axis with the smaller axis number.
*) An error will occur because the end point coordinates are calculated. Please use it after confirming it with the actual machine.
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) E:4,a,b,h,d,muc1,muc2,ae,muz

- Parameters

Send) a : Circle axis setting
b: Circle axis setting
h: Helical axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
*) Set different axes for $a, b$, and $h$.
*) For $a$, set the younger axis for $b$.
d : Rotation direction setting
0 CW rotation (Clockwise)
1 CCW rotation (counterclockwise)
m : Sign + or-(lf there is no sign, it will be "+")
u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
c1,c2 : Center coordinate setting
(relative position from the current position)
(c1: Set value of the axis with a small axis number (X axis))
(c2: Set value of the axis with a large axis number (Y axis))
z: Linear movement amount setting
(Amount of movement from the current position)
If the angle is less than $360^{\circ}$, the amount of movement until the angle is moved is $360^{\circ}$ or more, the amount of movement per rotation. For example, if the linear movement amount is set to 100 pls at $540^{\circ}$ (one and a half rotations), the total linear movement amount will be 150pls.
*) Since the total linear movement amount is calculated, an error will occur. Please use it after confirming it with the actual machine.
No specified Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value of pls converted to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )

# U Setting range : Value of pls converted to $\mu \mathrm{m}$ <br> (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ ) <br> M Setting range : Value of pls converted to mm <br> (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ ) ae : End point angle (deg) setting (Setting range : $0^{\circ}<$ ae $\leqq 360000^{\circ}$ ) 

- Example

On the 1st and 3rd axis stages, an arc is drawn in the CW direction from the current position to the end point angle of $90^{\circ}$ around the relative position from the current position (1st axis Opls, 3rd axis +100 pls). While doing, linear operation synchronized with arc interpolation with relative coordinates (2nd axis 50pls) as the destination.

| Send | Reply |
| :--- | :--- |
| E:4,1,3,2,0,0,100,90,50 | OK or NG |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.

66) E:5 command (Arc interpolation 6: Passing point helical [Execution buffer])

## - Description

This command sets and operates the movement axis of the arc interpolation operation, the passing point coordinates, the end point coordinates, and the movement destination coordinates of the linear operation axis synchronized with the arc interpolation operation.
*) The interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed for the axis with the smaller axis number.
*) An error will occur because the center coordinates are calculated. Please use it after confirming it with the actual machine.
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) E:5,a,b,h,d,mup1,mup2,mue1,mue2,muz

- Parameters

Send) a : Circle axis setting
b: Circle axis setting
h : Helical axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
*) Set different axes for $\mathrm{a}, \mathrm{b}$, and h .
*) For $a$, set the younger axis for $b$.
m : Sign + or-(If there is no sign, it will be " + ")
u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
$\mathrm{p} 1, \mathrm{p} 2$ : Passing point coordinate setting
(relative position from the current position)
( p 1 : Set value of the axis with a small axis number (X axis))
( p 2 : Set value of the axis with a large axis number ( Y axis))
e1,e2 : End point coordinate setting
(relative position from the current position)
(e1: Set value of the axis with a small axis number ( X axis))
(e2: Set value of the axis with a large axis number (Y axis))
z : Linear movement destination coordinate setting
(relative position from the current position)
Passing point coordinates, ending point coordinates, Linear destination coordinates Setting range

No specified Setting range: 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value of pls converted to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
$U$ Setting range : Value of pls converted to $\mu \mathrm{m}$
(Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
M Setting range : Value of pls converted to mm
(Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
*) If the passing point coordinates, end point coordinates and current position are on a straight line, an arc cannot be specified, so "NG" is returned.

## - Example

At the stage of the 1st and 2nd axes, from the current position via the passing point coordinates ( 1 st axis- 0.05 mm , 2nd axis +0.03 mm ) and the end point coordinates (1st axis0.08 mm , 2 nd axis +0.12 mm ) A straight line operation synchronized with arc interpolation with the relative coordinates (third axis +0.1 mm ) as the destination while drawing an arc up to.

| Send | Reply |
| :---: | :--- |
| E:5,1,2,3,0,M0.05,M0.03,M0.08,M0.12,M0.1 | OK or NG |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.

67) EP:0 command (Arc interpolation 7: Perfect circle [Prebuffer])

- Description

It is a command to set the movement axis, rotation direction, center coordinates, and operation speed of the arc interpolation operation (perfect circle) and operate it.
*) If the speed is not set with this command, the interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed of the axis with the smaller axis number.
*) When the speed is set with this command, the speed setting of the axis with the smaller axis number is rewritten, so it is necessary to set all the minimum speed, maximum speed, and acceleration / deceleration time.
*) This command can be used with the double buffer function. For details, refer to "2. About the double buffer".
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) EP:0,a,b,d,muc1,muc2,s,f,r

- Parameters

Send) a : Circle axis setting
b: Circle axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
*) Set different axes for $\mathrm{a}, \mathrm{b}$, and h .
*) For a, set the younger axis for b .
d : Rotation direction setting
0 CW rotation (Clockwise)
1 CCW rotation (Counterclockwise)
m : Sign + or-(If there is no sign, it will be " + ")
u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls and pls/s)
c1,c2 : Center coordinate setting
(relative position from the current position)
(c1: Set value of the axis with a small axis number (X axis))
(c2: Set value of the axis with a large axis number (Y axis))
Center coordinates setting range
No specified Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value of pls converted to nm
(Example: N1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
U Setting range : Value of pls converted to $\mu \mathrm{m}$
(Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
$M$ Setting range : Value of pls converted to mm
(Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
s : Minimum speed setting
f : Maximum speed setting
No unit specified Setting range: 1 to 1,000,000 (unit: pls / s)
Unit specification N Setting range: Value obtained by converting pls / s to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )

Unit specification U Setting range: Value obtained by converting pls / s to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification M Setting range: Value obtained by converting pls / s to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )

Unit specification D Setting range: Value obtained by converting pls / s to an angle (Example: D0.001 when the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$ )
*) Set only for axes with a small axis number.
*) The unit of the axis with the smaller axis number is reflected in the speed setting.
*) The maximum speed should be greater than or equal to the minimum speed.
$r$ : Acceleration / deceleration time setting
Setting range : $1 \sim 1,000 \mathrm{~ms}$
*) Set only for axes with a small axis number.

- Example

The operation of drawing a circle clockwise from the current position on the stage of the 1st and 2nd axes to the current position centering on the relative position from the current position (1st axis 0.05 mm , 2nd axis -0.05 mm ). Set the minimum speed to $0.5 \mathrm{~mm} / \mathrm{s}$, the maximum speed to $5 \mathrm{~mm} / \mathrm{s}$, and the acceleration / deceleration time to 50 ms .

| Send | Reply |
| :--- | :--- |
| EP:0,1,2,0,M0.05,-M0.05,0.5,5,50 | OK or OK_D or NG |

*) In the case of the motor excitation is OFF, it will be "NG" and this command cannot be executed.
*) This command was sent while the operation was being executed by the "H:", "HRT:", "Z:", "ZRT:", "M:", "A:", "E:", "K:", and "J:" commands. In that case, it cannot be set as a double buffer and will be "NG".

68) EP:1 command (Arc interpolation 8: Angle [Prebuffer])

- Description

It is a command to set the movement axis, rotation direction, center coordinates, end point angle (deg), and operation speed of the arc interpolation operation.
*) If the speed is not set with this command, the interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed of the axis with the smaller axis number.
${ }^{*}$ ) When the speed is set with this command, the speed setting of the axis with the smaller axis number is rewritten, so it is necessary to set all the minimum speed, maximum speed, and acceleration / deceleration time.
*) This command can be used with the double buffer function.For details, refer to "2. About the double buffer".
*) An error will occur because the end point coordinates are calculated. Please use it after confirming it with the actual machine.
*) The distance traveled per pulse must be the same between the interpolation axes.
If they are different, the correct interpolation operation will not be performed.

- Command format

Send) EP:1,a,b,d,muc1,muc2,ae,s,f,r

- Parameters

Send) a : Circle axis setting
b: Circle axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
${ }^{*}$ ) Set different axes for $\mathrm{a}, \mathrm{b}$, and h .
*) For $a$, set the younger axis for $b$.
d : Rotation direction setting
0 CW ROTATION (CLOCKWISE)
1 CCW rotation (counterclockwise)
m : Sign + or-(lf there is no sign, it will be "+")
u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls and pls/s)
c1,c2 : Center coordinate setting
(relative position from the current position)
(c1: Set value of the axis with a small axis number (X axis))
(c2: Set value of the axis with a large axis number (Y axis))
Center coordinates setting range
No specified Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value of pls converted to nm
(Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
$U$ Setting range : Value of pls converted to $\mu \mathrm{m}$
(Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
M Setting range : Value of pls converted to mm
(Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
ae : End point angle (deg) setting (Setting range : $0^{\circ}<$ ae $\leqq 360^{\circ}$ )

## s: Minimum speed setting

f : Maximum speed setting No unit specified Setting range: 1 to 1,000,000 (unit: pls / s)
Unit specification N Setting range: Value obtained by converting pls / s to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification U Setting range: Value obtained by converting pls / s to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification M Setting range: Value obtained by converting pls / s to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification D Setting range: Value obtained by converting pls / s to an angle (Example: D0.001 when the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$ )
${ }^{*}$ ) Set only for axes with a small axis number.
*) The unit of the axis with the smaller axis number is reflected in the speed setting.
*) The maximum speed should be greater than or equal to the minimum speed.
$r$ : Acceleration / deceleration time setting
Setting range : $1 \sim 1,000 \mathrm{~ms}$
*) Set only for axes with a small axis number.

- Example

On the 1st and 3rd axis stages, an arc is drawn in the CW direction from the current position to the end point angle of $90^{\circ}$ around the relative position from the current position (1st axis +100 pls , 3rd axis -200 pls ). Set the minimum speed to $100 \mathrm{pls} / \mathrm{s}$, the maximum speed to 1000 pls / s, and the acceleration / deceleration time to 50 ms .

| Send | Reply |
| :---: | :---: |
| EP:1,1,3,0,100,-200,90,100,1000,50 | OK or OK_D or NG |

${ }^{*}$ ) In the case of the motor excitation is OFF, it will be "NG" and this command cannot be executed.
*) This command was sent while the operation was being executed by the "H:", "HRT:", "Z:", "ZRT:", "M:", "A:", "E:", "K:", and "J:" commands. In that case, it cannot be set as a double buffer and will be "NG".

69) EP:2 command (Arc interpolation 9: Passing point [Prebuffer])

## - Description

It is a command to set and operate the movement axis, passing point coordinates, end point coordinates, and operation speed of the arc interpolation operation.
*) If the speed is not set with this command, the interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed of the axis with the smaller axis number.
*) When the speed is set with this command, the speed setting of the axis with the smaller axis number is rewritten, so it is necessary to set all the minimum speed, maximum speed, and acceleration / deceleration time.
*) This command can be used with the double buffer function. For details, refer to " 2 . About the double buffer".
*) An error will occur because the center coordinates are calculated. Please use it after confirming it with the actual machine.
${ }^{*}$ ) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) EP:2,a,b,d,mup1,mup2,mue1,mue2,s,f,r

- Parameters

Send) a : Circle axis setting
b: Circle axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
${ }^{*}$ ) Set different axes for $\mathrm{a}, \mathrm{b}$, and h .
*) For $a$, set the younger axis for $b$.
d : Rotation direction setting
0 CW ROTATION (CLOCKWISE)
1 CCW rotation (counterclockwise)
m : Sign + or-(lf there is no sign, it will be " + ")
u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls and pls/s)
p1,p2 : Passing point coordinate setting
(relative position from the current position)
( p 1 : Set value of the axis with a small axis number ( X axis))
(p2: Set value of the axis with a large axis number (Y axis))
e1,e2 : End point coordinate setting
(relative position from the current position)
(e1: Set value of the axis with a small axis number (X axis))
(e2: Set value of the axis with a large axis number (Y axis))
Passing point coordinates, ending point coordinates Setting range
No specified Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range: Value of pls converted to nm
(Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
$\cup$ Setting range : Value of pls converted to $\mu \mathrm{m}$
(Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )

## M Setting range : Value of pls converted to mm

(Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
$s$ : Minimum speed setting
f: Maximum speed setting
No unit specified Setting range: 1 to 1,000,000 (unit: pls / s)
Unit specification N Setting range: Value obtained by converting pls / s to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ ) Unit specification U Setting range: Value obtained by converting pls / s to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification M Setting range: Value obtained by converting pls / s to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification D Setting range: Value obtained by converting pls / s to an angle (Example: D0.001 when the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$ )
*) Set only for axes with a small axis number.
*) The unit of the axis with the smaller axis number is reflected in the speed setting.
*) The maximum speed should be greater than or equal to the minimum speed.
$r$ : Acceleration / deceleration time setting
Setting range : 1~1,000 ms
*) Set only for axes with a small axis number.
*) If the passing point coordinates, end point coordinates and current position are on a straight line, an arc cannot be specified, so "NG" is returned.

- Example

The operation of drawing an arc from the current position to the end point coordinates (1st axis +0.08 mm , 2 nd axis +0.12 mm ) via the passing point coordinates on the 1 st and 2 nd axis stages (1st axis +0.05 mm , 2nd axis +0.03 mm ).
Set the minimum speed to $0.5 \mathrm{~mm} / \mathrm{s}$, the maximum speed to $5 \mathrm{~mm} / \mathrm{s}$, and the acceleration / deceleration time to 50 ms .

| Send | Reply |
| :---: | :---: |
| EP:2,1,2,0,M0.05,M0.03,M0.08,M0.12,0.5,5,50 | OK or OK_D or NG |

*) In the case of the motor excitation is OFF, it will be "NG" and this command cannot be executed.
*) This command was sent while the operation was being executed by the "H:", "HRT:", "Z:", "ZRT:", "M:", "A:", "E:", "K:", and "J:" commands. In that case, it cannot be set as a double buffer and will be "NG".

70) EP:3 command (Arc interpolation 10: Perfect circle helical [Prebuffer])

- Description

This command sets and operates the movement axis, rotation direction, center coordinates, movement speed, and movement destination coordinates of the linear movement axis synchronized with the arc interpolation movement (perfect circle).
*) If the speed is not set with this command, the interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed of the axis with the smaller axis number.
*) When the speed is set with this command, the speed setting of the axis with the smaller axis number of the arc interpolation axis is rewritten, so it is necessary to set all the minimum speed, maximum speed, and acceleration / deceleration time.
*) This command can be used with the double buffer function. For details, refer to "2. About the double buffer".
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) EP:3,a,b,h,d,n,muc1,muc2,muz,s,f,r

- Parameters

Send) a : Circle axis setting
b: Circle axis setting
h : Helical axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
*) Set different axes for $\mathrm{a}, \mathrm{b}$, and h .
*) For $a$, set the younger axis for $b$.
d: Rotation direction setting
0 CW ROTATION (CLOCKWISE)
1 CCW rotation (counterclockwise)
n : Rotation value
1~1000
m : Sign + or-(If there is no sign, it will be " + ")
u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls and pls/s)
c1,c2 : Center coordinate setting (relative position from the current position)
(c1: Set value of the axis with a small axis number (X axis))
(c2: Set value of the axis with a large axis number (Y axis))
z : Linear movement amount setting
(movement amount per rotation from the current position)
For example, if the number of rotations is specified as 2 rotations and the linear movement amount setting is 100pls, the total linear movement amount will be 200pls.
No specified Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value of pls converted to nm
(Example: N1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
$U$ Setting range : Value of pls converted to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
$M$ Setting range : Value of pls converted to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
s : Minimum speed setting
f: Maximum speed setting
No unit specified Setting range: 1 to 1,000,000 (unit: pls / s)
Unit specification N Setting range: Value obtained by converting pls / s to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification U Setting range: Value obtained by converting pls / s to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification M Setting range: Value obtained by converting pls / s to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification D Setting range: Value obtained by converting pls / s to an angle (Example: D0.001 when the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$ )
*) Set only for axes with a small axis number.
*) The unit of the axis with the smaller axis number is reflected in the speed setting.
*) The maximum speed should be greater than or equal to the minimum speed.
$r$ : Acceleration / deceleration time setting
Setting range : $1 \sim 1,000 \mathrm{~ms}$
*) Set only for axes with a small axis number.

- Example

The operation of drawing a circle clockwise from the current position to the current position around the relative coordinates (1st axis 0pls, 2nd axis 5000pls) on the 1st and 2nd axis stages.Linear operation synchronized with arc interpolation with relative coordinates (2000pls on the 3rd axis) as the destination. Set the minimum speed to 100pls / s, the maximum speed to $1000 \mathrm{pls} / \mathrm{s}$, and the acceleration / deceleration time to 50 ms .

| Send | Reply |
| :---: | :---: |
| EP:3,1,2,3,0,1,0,5000,2000,100,1000,50 | OK or OK_D or NG |

*) In the case of the motor excitation is OFF, it will be "NG" and this command cannot be executed.
*) This command was sent while the operation was being executed by the "H:", "HRT:", "Z:", "ZRT:", "M:", "A:", "E:", "K:", and "J:" commands. In that case, it cannot be set as a double buffer and will be "NG".

71) EP:4 command (Arc interpolation 11: Angle helical [Prebuffer])

## - Description

This command sets and operates the movement axis, rotation direction, center coordinates, end point angle (deg), movement speed, and movement destination coordinates of the linear movement axis synchronized with the arc interpolation movement.
*) If the speed is not set with this command, the interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed of the axis with the smaller axis number.
*) When the speed is set with this command, the speed setting of the axis with the smaller axis number of the arc interpolation axis is rewritten, so it is necessary to set all the minimum speed, maximum speed, and acceleration / deceleration time.
*) This command can be used with the double buffer function. For details, refer to "2. About the double buffer".
*) An error will occur because the end point coordinates are calculated. Please use it after confirming it with the actual machine.
${ }^{*}$ ) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) EP:4,a,b,h,d,muc1,muc2,ae,muz,s,f,r

- Parameters

Send) a : Circle axis setting
b : Circle axis setting
h: Helical axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
*) Set different axes for $\mathrm{a}, \mathrm{b}$, and h .
*) For a , set the younger axis for b .
d: Rotation direction setting
0 CW ROTATION (CLOCKWISE)
1 CCW rotation (counterclockwise)
m : Sign + or-(If there is no sign, it will be " + ")
u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls and pls/s)
c1,c2 : Center coordinate setting (relative position from the current position)
(c1: Set value of the axis with a small axis number (X axis))
(c2: Set value of the axis with a large axis number (Y axis))

## z: Linear movement amount setting

(Amount of movement from the current position)
If the angle is less than $360^{\circ}$, the amount of movement until the angle is moved is $360^{\circ}$ or more, the amount of movement per rotation. For example, if the linear movement amount is set to 100 pls at $540^{\circ}$ (one and a half rotations), the total linear movement amount will be 150pls.
*) Since the total linear movement amount is calculated, an error will occur. Please use it after confirming it with the actual machine.
No specified Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value of pls converted to nm (Example: N1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
$U$ Setting range : Value of pls converted to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
$M$ Setting range : Value of pls converted to mm
(Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
ae : End point angle (deg) setting (Setting range : $0^{\circ}<$ ae $\leqq 360000^{\circ}$ )
$s$ : Minimum speed setting
f : Maximum speed setting
No unit specified Setting range: 1 to 1,000,000 (unit: pls / s)
Unit specification N Setting range: Value obtained by converting pls / s to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification U Setting range: Value obtained by converting pls $/ \mathrm{s}$ to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification M Setting range: Value obtained by converting pls / s to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification D Setting range: Value obtained by converting pls / s to an angle
(Example: D0.001 when the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$ )
*) Set only for axes with a small axis number.
*) The unit of the axis with the smaller axis number is reflected in the speed setting.
*) The maximum speed should be greater than or equal to the minimum speed.
$r$ : Acceleration / deceleration time setting
Setting range : $1 \sim 1,000 \mathrm{~ms}$
*) Set only for axes with a small axis number.

## - Example

On the 1st and 3rd axis stages, an arc is drawn in the CW direction from the current position to the end point angle of $90^{\circ}$ around the relative position from the current position (1st axis Opls, 3rd axis + 100pls). Linear operation synchronized with arc interpolation with relative coordinates (2nd axis 50pls) as the destination.
Set the minimum speed to 100pls / s, the maximum speed to 1000pls / s, and the acceleration / deceleration time to 50 ms .

| Send | Reply |
| :---: | :---: |
| EP:4,1,3,2,0,0,100,90,50,100,1000,50 | OK or OK_D or NG |

*) In the case of the motor excitation is OFF, it will be "NG" and this command cannot be executed.
*) This command was sent while the operation was being executed by the "H:", "HRT:", "Z:", "ZRT:", "M:", "A:", "E:", "K:", and "J:" commands. In that case, it cannot be set as a double buffer and will be "NG".

Z-axis (2nd axis)

72) EP:5 command (Arc interpolation 12: Passing point helical [Prebuffer])

- Description

This command sets and operates the movement axis of the arc interpolation operation, the passing point coordinates, the end point coordinates, the operation speed, and the movement destination coordinates of the linear operation axis synchronized with the arc interpolation operation.
*) If the speed is not set with this command, the interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed of the axis with the smaller axis number.
*) When the speed is set with this command, the speed setting of the axis with the smaller axis number of the arc interpolation axis is rewritten, so it is necessary to set all the minimum speed, maximum speed, and acceleration / deceleration time.
*) This command can be used with the double buffer function. For details, refer to " 2 . About the double buffer".
*) An error will occur because the center coordinates are calculated. Please use it after confirming it with the actual machine.
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) EP:5,a,b,h,d,mup1,mup2,mue1,mue2,muz,s,f,r

Send) a : Circle axis setting
b: Circle axis setting
h : Helical axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
*) Set different axes for $\mathrm{a}, \mathrm{b}$, and h .
*) For $a$, set the younger axis for $b$.
d : Rotation direction setting
0 CW ROTATION (CLOCKWISE)
1 CCW rotation (counterclockwise)
m : Sign + or-(If there is no sign, it will be "+")
u : Unit setting
$\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls and pls/s)
p1,p2 : Passing point coordinate setting
(relative position from the current position)
( p 1 : Set value of the axis with a small axis number ( X axis))
( p 2 : Set value of the axis with a large axis number ( Y axis))
e1,e2 : End point coordinate setting
(relative position from the current position)
(e1: Set value of the axis with a small axis number (X axis))
(e2: Set value of the axis with a large axis number (Y axis))
$z$ : Linear movement destination coordinate setting
(relative position from the current position)
Passing point coordinates, ending point coordinates,
Linear destination coordinates Setting range
No specified Setting range : 0 ~ 999,999,999 (Unit: pls)
N Setting range : Value of pls converted to nm
(Example: N1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
$U$ Setting range : Value of pls converted to $\mu \mathrm{m}$
(Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
M Setting range : Value of pls converted to mm
(Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
s : Minimum speed setting
f : Maximum speed setting
No unit specified Setting range: 1 to 1,000,000 (unit: pls / s)
Unit specification N Setting range: Value obtained by converting pls / s to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification U Setting range: Value obtained by converting pls / s to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification M Setting range: Value obtained by converting pls / s to mm (Example: M0. 001 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
Unit specification D Setting range: Value obtained by converting pls / s to an angle
(Example: D0.001 when the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$ )
*) Set only for axes with a small axis number.
*) The unit of the axis with the smaller axis number is reflected in the speed setting.
*) The maximum speed should be greater than or equal to the minimum speed.
$r$ : Acceleration / deceleration time setting
Setting range : $1 \sim 1,000 \mathrm{~ms}$
*) Set only for axes with a small axis number.
*) If the passing point coordinates, end point coordinates and current position are on a straight line, an arc cannot be specified, so "NG" is returned.

- Example

An arc operation that operates from the current position to the end point coordinates (1st axis- $0.08 \mathrm{~mm}, 2 \mathrm{nd}$ axis +0.12 mm ) via the passing point coordinates (1st axis- 0.05 mm , 2nd axis +0.03 mm ) on the 1 st and 2 nd axis stages. At the same time, linear operation synchronized with arc interpolation with relative coordinates (third axis +0.1 mm ) as the destination. Set the minimum speed to $0.5 \mathrm{~mm} / \mathrm{s}$, the maximum speed to $5 \mathrm{~mm} / \mathrm{s}$, and the acceleration / deceleration time to 50 ms .

| Send | Reply |
| :---: | :---: |
| EP:5,1,2,3,0,-M0.05,M0.03,-M0.08,M0.12,M0.1,0.5,5,50 | OK or OK_D or NG |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
*) This command was sent while the operation was being executed by the "H:", "HRT:", "Z:", "ZRT:", "M:", "A:", "E:", "K:", and "J:" commands. In that case, it cannot be set as a double buffer and will be "NG".

73) K: command (Linear interpolation: 1 [Execution buffer])

- Description

It is a command to set the movement axis, movement direction, and relative movement amount of linear interpolation operation and operate it.
*) The interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed for the axis with the smaller axis number.
*) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

- Command format

Send) K:m1u1c1,m2u2c2,m3u3c3

```
- Parameters
    Send)m1: 1st Sign setting
        m2 : 2nd Sign setting
        m3 : 3rd Sign setting
            + or-(lf there is no sign, it will be "+")
            u1: 1st Unit setting
            u2 : 2nd Unit setting
            u3:3rd Unit setting
            N/U/M / D (If there is no unit specified, it is judged as pls)
            c1: 1st Set movement amount
            c2 : 2nd Set movement amount
            c3 : 3rd Set movement amount
            N Setting range : Value of pls converted to nm
                (Example: N1000 when the scale resolution is 1 nm at 1,000 pls)
            U Setting range: Value of pls converted to }\mu\textrm{m
                (Example: U1 when the scale resolution is 1 nm at 1,000 pls)
            M Setting range : Value of pls converted to mm
                (Example: M0.001 when the scale resolution is 1 nm at 1,000 pls)
            D Setting range: The value of pls converted to an degree
                (Example: D0.001 when the scale resolution is 0.000001 ' at
                1,000 pls)
            Not specified Setting range: 0 ~ 999,999,999 (Unit: pls)
- Example
```

| Send | Reply | Memo |
| :--- | :--- | :--- |
| K:1000,200, | OK or NG | 1000 pulse movement in the 1st axis + <br> direction, 200 pulse movement in the 2nd <br> axis + direction |
| K:U1000,200,M0.3 | OK or NG | 1000 pulse movement in the 1st axis + <br> direction, 200 pulse movement in the 2nd <br> axis + direction, 0.3mm movement in the <br> 3rd axis + direction |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
74) KP: command (Linear interpolation: 2 [Prebuffer])

- Description

It is a command to set the movement axis, movement direction, and relative movement amount of linear interpolation operation and operate it. If the movement speed is omitted, it will operate at the same speed as the previous operation.
*) If the speed is not set with this command, the interpolation operation speed (composite speed) operates at the minimum speed of the "D:" command setting speed of the axis with the smaller axis number.
*) When the speed is set with this command, the speed setting of the axis with the smaller axis number is rewritten, so it is necessary to set all the minimum speed, maximum speed, and acceleration / deceleration time.
*) This command can be used with the double buffer function. For details, refer to " 2 . About the double buffer".

[^10]- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| KP:1000,200,, <br> $100,1000,200$ | OK or OK_D <br> or NG | 1st axis + direction 1000 pulse movement, <br> 2nd axis + direction 200 pulse movement, <br> operating speed 100pls/s |
| KP: U1000,200,M0.3 <br> $, 100,1000,200$ | OK or OK_D <br> or NG | 1st axis + direction 1000 pulse movement, <br> 2nd axis + direction 200 pulse movement, <br> 3rd axis + direction 0.3 mm movement, <br> operating speed 100pls/s |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
*) This command was sent while the operation was being executed by the "H:", "HRT:", "Z:", "ZRT:", "M:", "A:", "E:", "K:", and "J:" commands. In that case, it cannot be set as a double buffer and will be "NG".
75) J: command (Jog driving operation 1)

- Description

This command drives the stage continuously at the minimum speed (constant speed drive). To stop it, send the stop command "L:". It also stops when the limit sensor is detected. The operating speed follows the setting of the "D:" command.

- Command format

Send) J:m1,m2,m3

- Parameters

Send) $\mathrm{m} 1: 1$ st axis operation direction setting
m 2 : 2nd axis operation direction setting
m 3 : 3rd axis operation direction setting

+ Plus direction setting with +
- Minus direction setting with -
- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| $\mathrm{J}:+,$, | OK or NG | 1st axis + direction |
| $\mathrm{J}:+,$, | OK or NG | 1st axis + direction, 2nd axis - direction |
| $\mathrm{J}:+,+$ | OK or NG | 1st axis + direction, 3rd axis + direction |
| $\mathrm{J}:+,-,+$ | OK or NG | 1st axis + direction, 2nd axis - direction, <br> 3rd axis + direction |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
76) D: command (Speed setting)

- Description

Set the operating speed of the stage. When the power is turned on, the minimum speed, maximum speed, and acceleration / deceleration time of the speed number are initially set by setting "SPEED"-"SPEED SEL" of the memory switch.

- Command format

Send 1) D:a,s,f,r
Send 2) D:a,u,s,f,fr

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
u : Unit setting
P pls designation
N nm designation
U $\mu \mathrm{m}$ designation
M mm designation
D degree designation
s : Minimum speed setting Setting range : 1 ~ 1,000,000 pls/s
$f:$ Maximum speed setting Setting range : $1 \sim 1,000,000 \mathrm{pls} / \mathrm{s}$
${ }^{*}$ ) Make sure it is at least the minimum speed.
$r$ : Acceleration and deceleration time Setting range : 1~1,000 ms

- Example

| Send | Reply | Memo |
| :---: | :---: | :--- |
| D:1,100,1000,100 | OK or NG | 1st axis speed setting <br> Minimum speed 100pls/s, <br> maximum speed 1000pls/s, <br> acceleration / deceleration time 100ms |
| D:2,200,2000,200 | OK or NG | 2nd axis speed setting <br> Minimum speed 200pls/s, <br> maximum speed 2000pls/s, <br> acceleration / deceleration time 200ms |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
77) JD: command (Setting for speed override during jog operation)

- Description

Change the operating speed while operating with the "J:" command.
*) At the end of the "J:" command operation, the maximum speed set by the "D:" command is overwritten.

- Command format

Send 1) JD:a,f
Send 2) JD:a,u,f

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
u : Unit setting
P pls designation
N nm designation
$\mathrm{U} \mu \mathrm{m}$ designation
M mm designation
D degree designation

78) B: command (Origin return speed setting)

- Description

Set the machine origin return speed of the stage. When the power is turned on, the memory switches "ORG"-"ORG (S)", "ORG (F)", and "ORG (R)" are initially set.

- Command format

Send 1) B:a,s,f,r
Send 2) B:a,u,s,f,r

- Parameters

Send) a : Axis setting
1 1st axis designation
2 2nd axis designation
3 3rd axis designation
u : Unit setting
$P$ pls designation
N nm designation
U $\mu \mathrm{m}$ designation
M mm designation
D degree designation
s : Minimum speed setting Setting range : 1~1,000,000 pls/s
f: Maximum speed setting Setting range : 1~1,000,000 pls/s
*) Make sure it is at least the minimum speed.
$r$ : Acceleration and deceleration time Setting range : $1 \sim 1,000 \mathrm{~ms}$

- Example

| Send | Reply | Memo |
| :--- | :--- | :--- |
| B:1,100,1000,100 | OK or NG | 1st axis speed setting <br> Minimum speed 100pls/s, <br> maximum speed 1000pls/s, <br> acceleration / deceleration time 100ms |
| B:2,200,2000,200 | OK or NG | 2nd axis speed setting <br> Minimum speed 200pls/s, <br> maximum speed 2000pls/s, <br> acceleration / deceleration time 200ms |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
79) I: command (General-purpose IO input confirmation)

- Description

Check the input status of general-purpose input.

- Command format

Send) I:
Reply) i

- Parameters

Reply) i : General-purpose input signal state

- General-purpose input signal status (blanks are OFF)

| Set <br> value | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN1 |  | ON |
| IN2 |  |  | ON | ON |
| IN3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| IN4 |  |  |  |  |  |  |  |  | ON |
| IN5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| IN6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Set value | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN1 |  | ON |
| IN2 |  |  | ON | ON |
| IN3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| IN4 |  |  |  |  |  |  |  |  | ON |
| IN5 | ON |
| IN6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Set <br> value | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| IN1 |  | ON |  |  | ON |  |
| IN2 |  |  | ON | ON |  |  | ON | ON |  |  | ON | ON |  |  |  | ON |
| IN3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON |  |  |  |
| IN4 |  |  |  |  |  |  |  |  | ON |
| IN5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| IN6 | ON |


| Set <br> value | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN1 |  | ON | O | ON |
| IN2 |  |  | ON | ON |
| IN3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| IN4 |  |  |  |  |  |  |  |  | ON |
| IN5 | ON |
| IN6 | ON |

- Example

| Send | Reply |  |
| :--- | :--- | :--- |
| I: | 16 | Only general-purpose input IN5 is ON |

80) O: command (General-purpose IO output command)

- Description

Set the general-purpose output status.

- Command format

Send) O:s

- Parameters

Send) s: General purpose output signal state $0 \sim 63$

- General-purpose output status (blanks are OFF)

| Set <br> value | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUT1 |  | ON |
| OUT2 |  |  | ON | ON |
| OUT3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON | ON | ON | ON |
| OUT4 |  |  |  |  |  |  |  |  | ON |
| OUT5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| OUT6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Set <br> value | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OUT1 |  | ON |
| OUT2 |  |  | ON | ON |
| OUT3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | $O N$ | ON | ON | ON |
| OUT4 |  |  |  |  |  |  |  |  | ON |
| OUT5 | ON |
| OUT6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Set <br> value | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUT1 |  | ON |  |  | ON |  |
| OUT2 |  |  | ON | ON |  |  | ON | ON |  |  | ON | ON |  |  |  | ON |
| OUT3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON |  |  |  |
| OUT4 |  |  |  |  |  |  |  |  | ON |
| OUT5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| OUT6 | ON |


| Set <br> value | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OUT1 |  | ON |
| OUT2 |  |  | ON | ON |
| OUT3 |  |  |  |  | ON | ON | ON | ON |  |  |  |  | ON |  | ON | ON |
| OUT4 |  |  |  |  |  |  |  |  | ON |
| OUT5 | ON |
| OUT6 | ON |

*) The output state is maintained until the next "O:" command is sent.

- Example

| Send | Reply |  |
| :--- | :--- | :--- |
| O:32 | OK or NG | Only OUT6 is ON |

81) T:T command (Trigger output 1 : Timer value specified)

- Description

Specifies the trigger time interval to output the trigger.

- Command format

Send) T:Ta

- Parameters

Send) a : Timer value Setting range : $1 \sim 10000$

$$
(0.01 ~ 100.00 \mathrm{sec})
$$

- Example

| Send | Reply | Contents |
| :---: | :---: | :---: |
| T:T100 | OK or NG | Pulse output every second |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
82) T:P command (Trigger output 2 : Pulse value specified)

- Description

Drive pulse Specify the target axis for trigger output and the trigger pulse interval for the drive pulse.
*) When executing the command, set the operating speed of the automatic stage to 56 kpps or less.
(Trigger may not be output if operated at 56 kpps or higher.)

- Command format

Send) T:PaPb

- Parameters

Send) a : Axis setting 1 or 2 or 3
b: Pulse value $2 \sim 30000$

- Example

| Send | Reply | Contents |
| :---: | :---: | :---: |
| T:P2P5 | OK or NG | 2nd axis outputs a pulse every 5 pulse movements |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

83) T:S command (Trigger output 3 : Pulse output prohibited)

- Description

Prohibits trigger output.

- Command format

Send) T:S

- Example

| Send |  |
| :--- | :--- |
| T:S | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
84) T:M command (Trigger output 4 : One-shot trigger output)

- Description

Outputs a one-shot trigger.

- Command format

Send) T:M

- Example

| Send |  | Reply |
| :--- | :--- | :--- |
| T:M | OK or NG |  |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
85) T:E command (Trigger output 5: Scale pulse value specified)

- Description

Specifies the target axis for trigger output and the trigger pulse interval for scale pulses.
*) When executing the command, set the operating speed of the automatic stage to 56 kpps or less.
(Trigger may not be output if operated at 56 kpps or higher.)

- Command format

Send) T:EaPmb

- Parameters

Send) a : Axis setting 1 or 2 or 3
m : Sign setting + or- (Sign cannot be omitted)
b: Pulse value $2 \sim 30000$

- Example

| Send | Reply | Contents |
| :---: | :---: | :--- |
| $\mathrm{T}: \mathrm{E} 1 \mathrm{P}+2$ | OK or NG | Pulse output every 2 pulse movements in the + <br> direction on the 1st axis |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

*) Even if the trigger returns in the reverse direction due to vibration, etc., it will not output a duplicate trigger.
86) P:R command (Program 1 : Program mode transition)

- Description

Moves to program mode.

- Command format

Send) P:R

- Example

| Send |  |
| :--- | :--- |
| P:R | OK or NG Reply |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

- Commands available in program mode

| *IDN? | !: | Q: | Q:S | ?: | L:E | BEC: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P:H | P:P | P:S | P:O | P:E | P:U | P:C |
| P:T | P:ON |  |  |  |  |  |

87) P:H command (Program 2 : Transition to host mode)

- Description

Return to host mode.

- Command format

Send) P:H

- Example

| Send | Reply |
| :--- | :--- |
| P:H | OK or NG |

${ }^{\text {*) }}$ In the case of Busy, it will be "NG" and this command cannot be executed.
88) P:P command (Program 3 : Program number designation)

- Description

Specify the program number.

- Command format

Send) $P: P p$

- Parameters

Send) p: Program number Setting range : 1~8

- Example

| Send | Reply | Contents |
| :--- | :---: | :--- |
| P:P2 | OK or NG | Select program number 2 |

${ }^{*}$ ) In the case of Busy, it will be "NG" and this command cannot be executed.
89) P:S command (Program 4 : Program operation : Operation start)

- Description

The program operation will start.

- Command format

Send) P:S

- Example

| Send |  |
| :--- | :--- |
| P:S | OK or NG Reply |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
90) P:O command (Program 5 : Program operation: One-line execution operation start)

- Description

The one-line execution operation is started by the program operation.
It can be used during pause with the "P: U" command.

- Command format

Send) P:O

- Example

| Send |  |
| :--- | :--- |
| P:O | OK or NG |

*) In the case of Busy, it will be " $N G$ " and this command cannot be executed.
91) P:E command (Program 6 : Program operation : Stop operation)

- Description

Stops the program operation.

- Command format

Send) P:E

- Example

| Send | Reply |
| :--- | :--- |
| P:E | OK or NG |

92) P:U command (Program 7: Program operation : Pause)

- Description

Pauses program operation.

- Command format

Send) P:Uu

- Parameters

Send) u: Pause 0 or 1
0 Pause
1 Unpause

- Example

| Send | Reply | Contents |
| :--- | :---: | :---: |
| P:U0 | OK or NG | Pause program operation |

93) P:C command (Program 8 : Program operation : Send completion signal)

- Description

When the program operation is completed, the "COMP" character string is replied to the PC.

- Command format

Send) P:Cc

- Parameters

Send) c: Signal transmission 0 or 1
0 Signal transmission prohibited
1 Signal transmission enabled

- Example

| Send | Reply | Contents |
| :---: | :--- | :--- |
| P:C1 | OK or NG | Enables completion signal transmission during <br> program operation |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
94) P:T command (Program 9 : Program operation : Send trigger signal)

- Description

When the trigger is output during program operation, the "TRIG" character string is sent to the PC.

- Command format

Send) P:Tt

- Parameters

Send) $t$ : Trigger signal transmission 0 or 1
0 Prohibition of trigger signal transmission
1 Trigger signal transmission controllable

- Example

| Send | Reply | Contents |
| :---: | :---: | :---: |
| P:T0 | OK or NG | Prohibition of trigger signal transmission at the time <br> of trigger output during program operation |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
95) P:ON command (Program 10 : Shift to edit mode)

- Description

It shifts from the state where it is in the program mode to the program edit mode.
*) The program number can be edited with the number set by the "P: P" command.

- Command format

Send) P:ON

- Example

| Send | Reply |
| :--- | :--- |
| P:ON | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

- Commands available in program mode

| P:OFF | P:DEL | P:SET | P:GET | P:INIT |
| :--- | :--- | :--- | :--- | :--- |

96) P:OFF command (Program 11 : Program mode transition)

- Description

From the program edit mode, if there is no "END" in all registered lines, "END" is automatically added, the set content is saved, and the program mode is entered.
*) If up to the 4000 th line is registered, "END" will not be added automatically.

- Command format

Send) P:OFF

- Example

| Send | Reply |
| :--- | :--- |
| P:OFF | OK or NG |

${ }^{*}$ ) In the case of Busy, it will be " NG " and this command cannot be executed.
97) P:DEL command (Program 12 : Delete program line designation)

- Description

Delete the program contents by specifying a line in the program edit mode.

- Command format

Send) P:DEL,n

- Parameters

Send) n: Program number $1 \sim 4000$

- Example

| Send | Reply | Contents |
| ---: | :--- | :--- |
| P:DEL,1500 | OK or NG | Deleted line 1500 of program number 1 |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
98) P:SET command (Program 13 : Program line designation setting)

- Description

Set the program contents by specifying the line in the program edit mode.
*) Setting items differ depending on the operation pattern.
*) As for the program number, the number set by the "P: P" command will be edited.
(1) Operation pattern : Relative value operation M , absolute value operation A , linear interpolation K
Performs relative, absolute, and linear interpolation.

- Command format

Send1) P:SET,n,p,as1,as2,as3,ap1,ap2,ap3,o,s,w,tm,ta,tv
Send2) P:SET,n,p,as1,as2,as3,ap1,ap2,ap3,o,s,w,tm
${ }^{*}$ ) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Send1), and if the trigger mode is other than that, Send2). *) If the trigger mode is for a certain period of time, specify 1 for the trigger target axis ta.

- Parameters

Send) n : Program number $1 \sim 000$
$p$ : Driving pattern $\quad \mathrm{M}$ or A or K
*) In case of $K$, please enable 2 or more axes for the following axis states.
as1: 1st axis state
0 (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state 0 (axis invalid) or 1 (axis controllable)
ap1: 1st axis coordinate value -999,999,999 ~ 999,999,999 pls
ap2 : 2nd axis coordinate value -999,999,999 ~ 999,999,999 pls
ap3 : 3rd axis coordinate value -999,999,999 ~ 999,999,999 pls
o : General-purpose output instruction $0 \sim 63$
s: Operating speed $1 \sim 4$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 0 Drive pulse designation
1 Specify a certain time
2 + Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation

$$
\begin{array}{ll}
\text { ta : Trigger target axis } & 1 \sim 3 \\
\text { tv : Trigger output interval } & \text { Trigger mode } 0: 2 \sim 30000 \text { pls } \\
& \text { Trigger mode 1:1~10000 (0.01sec uint) } \\
& \text { Trigger mode 2,3: } \pm 2 \sim 30000 \text { pls }
\end{array}
$$

## - Example

Relative value operation on the 1500th line, 1st, 2nd and 3rd axis controllable, 1st axis movement amount: 100pls, 2nd axis movement amount: 200pls, 3rd axis movement amount: 300pls, general-purpose output instruction: 0, movement speed 1, Wait time: 0 seconds, Trigger mode: Drive pulse, Trigger target axis: 1st axis, Trigger output interval: 100pls set

| Send | Reply |
| :---: | :--- |
| P:SET:1500,M, $1,1,1,100,200,300,0,1,0,0,1,100$ | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(2) Operation pattern : Relative continuous operation CM, Absolute continuous operation CA
Performs continuous operation with relative and absolute values. The specified coordinate value is considered as a passing point and operates continuously without stopping, and a trigger is output when the specified coordinate value is passed. (If it is continuous, the maximum is 256 lines.)
${ }^{*}$ ) When using the trigger output, set the set speed to 25 kpps or less.

- Command format

Send) P:SET,n,p,as1,as2,as3,ap1,ap2,ap3,o,s,w,tm

- Parameters

| Send) | $\mathrm{n}:$ Program number | $1 \sim 4000$ |
| :--- | :--- | :--- |
|  | $\mathrm{p}:$ Driving pattern | CM or CA |
|  | as1 $: 1$ st axis state | 0 (axis invalid) or 1 (axis controllable) |
|  | as2 $: 2 \mathrm{nd}$ axis state | 0 (axis invalid) or 1 (axis controllable) |
|  | as3 $: 3 r d$ axis state | 0 (axis invalid) or 1 (axis controllable) |

*) Only one axis can be enabled. If multiple axes are enabled, a command error will occur.
ap1: 1st axis coordinate value -999,999,999 ~ 999,999,999 pls
ap2 : 2nd axis coordinate value -999,999,999 ~ 999,999,999 pls
ap3 : 3rd axis coordinate value -999,999,999 ~ 999,999,999 pls
o: General-purpose output instruction $0 \sim 63$
s: Operating speed $\quad 1 \sim 4$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 0 Drive pulse designation
2 Scale pulse designation

## - Example

Relative continuous operation on the 1500th line, controllable only for the 1st axis, 1st axis movement amount: 100pls, 2nd axis movement amount: Opls, 3rd axis movement amount: Opls, general-purpose output instruction: 0 , movement speed: 1 , Wait time: 0 seconds, Trigger mode: Set drive pulse

| Send | Reply |
| :---: | :--- |
| P:SET,1500,CM, 1,0,0,100,0,0,0,1,0,0 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(3) Operation pattern : Arc interpolation E (Perfect circle)

Executes the arc interpolation operation (specify a perfect circle).
*) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.

- Command format

Send1) P:SET,n,p,as1,as2, as3,cm,c1,c2,o,s,w,tm,ta,tv
Send2) P:SET,n,p,as1,as2, as3,cm,c1,c2,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Send1), and if the trigger mode is other than that, Send2).
*) If the trigger mode is for a certain period of time, specify 1 for the trigger target axis ta.
*) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.

- Parameters

Send) $n$ : Program number $1 \sim 4000$
p : Driving pattern
as1: 1st axis state
as2: 2nd axis state
as3 : 3rd axis state

E
0 (axis invalid) or 1 (axis controllable)
0 (axis invalid) or 1 (axis controllable)
0 (axis invalid) or 1 (axis controllable)
*) Two axes can be enabled. If all are enabled, a command error will occur.
cm : Circle mode
0 Perfect circle designation CW rotation direction
1 Perfect circle designation CCW rotation direction
c1: Center point coordinate value -999,999,999~999,999,999 pls
*) It is the center point coordinate value of the axis ( X axis) with 2 axes enabled in as1 to 3 and the axis number is small, and is the relative position from the current position.
c2 : Center point coordinate value -999,999,999 ~ 999,999,999 pls
*) It is the center point coordinate value of the axis ( Y axis) with the larger axis number on the 2 axes enabled in as $1 \sim 3$, and is the relative position from the current position.
o : General-purpose output instruction $0 \sim 63$
s: Operating speed $\quad 1 \sim 4$ (Minimum velocity of c 1 axis (S))
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 0 Drive pulse designation
1 Specify a certain time
2 + Scale pulse designation
3 - Scale pulse designation

|  | 4 One-shot trigger designation |
| :---: | :---: |
|  | *) Output after positioning of all effective axes |
|  | 5 Trigger issuance prohibited |
|  | 6 Take over the previous trigger setting |
|  | *) When specifying the drive pulse, + scale pulse, scale pulse, set the set speed to 56 kpps or less. |
| ta : Trigger target axis | 1~3 |
| tv : Trigger output interval | Trigger mode 0 : $2 \sim 30000 \mathrm{pls}$ |
|  | Trigger mode 1: 1~10000 (0.01sec uint) |
|  | Trigger mode 2,3: $\pm 2 \sim 30000 \mathrm{pls}$ |

## - Example

On the 1500th line, arc interpolation operation, 1st and 3rd axis controllable, arc mode: perfect circle specification CW rotation direction, 1st axis center point coordinate value: 100pls, 3rd axis center point coordinate value: 200pls, general-purpose output instruction: 0 , movement speed: 1 , standby time: 0 seconds, trigger mode: drive pulse, trigger target axis: 1 st axis, trigger output interval: 100pls is set, and the operation returns to the current position.

| Send | Reply |
| :---: | :--- |
| P:SET,1500,E,1,0,1,0,100,200,0,1,0,0,1,100 | OK or NG |

*) In the case of Busy, it will be " NG " and this command cannot be executed.

(4) Operation pattern : Arc interpolation E (Angle)

Performs circle interpolation operation (angle specification).
*) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.

- Command format

Send1) P:SET,n,p,as1,as2, as3,cm,c1,c2,al,o,s,w,tm,ta,tv
Send2) P:SET,n,p,as1,as2, as3,cm,c1,c2,al,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Send1), and if the trigger mode is other than that, Send2).
*) If the trigger mode is for a certain period of time, specify 1 for the trigger target axis ta.

- Parameters

Send) $n$ : Program number $1 \sim 4000$
$p$ : Driving pattern E
as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
*) Two axes can be enabled. If all are enabled, a command error will occur.
$\mathrm{cm}:$ Circle mode $\quad 2 \begin{aligned} & \text { Angle specification } \\ & \\ & \text { CW rotation direction }\end{aligned}$
3 Angle specification
CCW rotation direction
c1: Center point coordinate value -999,999,999 ~ 999,999,999 pls
${ }^{*}$ ) It is the center point coordinate value of the axis (X axis) with 2 axes enabled in as 1 to 3 and the axis number is small, and is the relative position from the current position.
c2 : Center point coordinate value -999,999,999 ~ 999,999,999 pls
${ }^{*}$ ) It is the center point coordinate value of the axis ( Y axis) with the larger axis number on the 2 axes enabled in as $1 \sim 3$, and is the relative position from the current position.
al : Degree $\quad 0 \sim 360$ (Degree)
o : General-purpose output instruction $0 \sim 63$
s : Operating speed $\quad 1 \sim 4$ (Minimum velocity of c 1 axis (S))
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 0 Drive pulse designation
1 Specify a certain time
2 + Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation
*) Output after positioning of all effective axes
5 Trigger issuance prohibited
6 Take over the previous trigger setting
*) When specifying the drive pulse, + scale pulse, andscale pulse, set the set speed to 56 kpps or less.
ta: Trigger target axis $1 \sim 3$
tv : Trigger output interval Trigger mode 0:2~30000 pls
Trigger mode 1: $1 \sim 10000$ ( 0.01 sec uint)
Trigger mode 2,3: $\pm 2$ ~ 30000 pls
*) An error will occur because the center coordinates are calculated. Please use it after confirming it with the actual machine.

## - Example

On the 1500th line, arc interpolation operation, 1st and 2nd axis controllable, arc mode: angle specification CW rotation direction, 1st axis center point coordinate value: 100pls, 2nd axis center point coordinate value: -200pls, angle: 90 degrees, General-purpose output instruction: 0, Operating speed: 1, Standby time: 0 seconds, Trigger mode: Drive pulse, Trigger target axis: 1st axis, Trigger output interval: 100pls set

| Send | Reply |
| :---: | :--- |
| P:SET,1500,E,1,1,0,2,100,-200,90,0,1,0,0,1,100 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

(5) Operation pattern : Arc interpolation E (Passing point)

Executes arc interpolation operation. (passing point specification).
*) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.

- Command format

Send1) P:SET,n,p,as1,as2, as3,cm,p1,p2,e1,e2,o,s,w,tm,ta,tv
Send2) P:SET,n,p,as1,as2, as3,cm,p1,p2,e1,e2,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Send1), and if the trigger mode is other than that, Send2).
*) If the trigger mode is for a certain period of time, specify 1 for the trigger target axis ta.
*) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.

- Parameters

Send) $n$ : Program number $1 \sim 4000$
p : Driving pattern E
as 1 : 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3: 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
*) Two axes can be enabled. If all are enabled, a command error will occur.
$\mathrm{cm}:$ Circle mode $\quad 4 \begin{aligned} & \text { Specifying a passing point } \\ & \text { CW rotation direction }\end{aligned}$
5 Specifying a passing point CW rotation direction
p1: Passing point coordinate value -999,999,999 ~ 999,999,999 pls
*) It is the center point coordinate value of the axis ( X axis) with 2 axes enabled in as 1 to 3 and the axis number is small, and is the relative position from the current position.
p2 : Passing point coordinate value -999,999,999 ~ 999,999,999 pls
*) It is the center point coordinate value of the axis ( Y axis) with the larger axis number on the 2 axes enabled in as $1 \sim 3$, and is the relative position from the current position.
e1: End point coordinate value -999,999,999 ~ 999,999,999 pls
*) It is the center point coordinate value of the axis ( X axis) with 2 axes enabled in as 1 to 3 and the axis number is small, and is the relative position from the current position.

$$
\text { e2 : End point coordinate value } \quad-999,999,999 \text { ~ 999,999,999 pls }
$$

*) It is the center point coordinate value of the axis ( Y axis) with the larger axis number on the 2 axes enabled in as $1 \sim 3$, and is the relative position from the current position.
o : General-purpose output instruction $0 \sim 63$
$s$ : Operating speed $\quad 1 \sim 4$ (Minimum velocity of $p 1, \mathrm{e} 1$ axis (S))
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)

| tm : Trigger mode | 0 Drive pulse designation <br> 1 Specify a certain time <br> $2+$ Scale pulse designation <br> 3 - Scale pulse designation <br> 4 One-shot trigger designation <br> *) Output after positioning of all effective axes <br> 5 Trigger issuance prohibited <br> 6 Take over the previous trigger setting <br> *) When specifying the drive pulse, + scale pulse, andscale pulse, set the set speed to 56 kpps or less. |
| :---: | :---: |
| ta : Trigger target axis |  |
| tv : Trigger output interval | Trigger mode $0: 2 \sim 30000$ pls |
|  | Trigger mode 1: 1~10000 (0.01sec uint) |
|  | Trigger mode 2,3 : $\pm 2 \sim 30000$ pls |

## - Example

On the 1500th line, arc interpolation operation, 2nd and 3rd axis controllable, arc mode: passing point specification CW rotation direction, 2nd axis passing point coordinate value: 100pls, 3rd axis passing point coordinate value: 150pls, 2nd axis end point Coordinate value: 500pls, 3rd axis end point coordinate value: 200pls, general-purpose output instruction: 0 , movement speed: 1 , standby time: 0 seconds, trigger mode: drive pulse, trigger target axis: 2nd axis, trigger output interval: 100pls The set

| Send | Reply |
| :---: | :--- |
| P:SET,1500,E,0,1,1,4,100,150,500,200,0,1,0,0,2,100 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

(6) Operation pattern : Helical interpolation EH (Perfect circle)

Executes helical interpolation operation. (specify a perfect circle).
*) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.

- Command format

Send1) P:SET,n,p,as1,as2, as3,cm,c1,c2,hl,r,o,s,w,tm,ta,tv
Send2) P:SET,n,p,as1,as2, as3,cm,c1,c2,hl,r,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Send1), and if the trigger mode is other than that, Send2).
*) If the trigger mode is for a certain period of time, specify 1 for the trigger target axis ta.

- Parameters

Send) $n$ : Program number $1 \sim 4000$
$p$ : Driving pattern EH
as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3: 3rd axis state 0 (axis invalid) or 1 (axis controllable)
${ }^{*}$ ) Enable 2 axes of circle interpolation axis. If all are enabled, a command error will occur.

cm : Circle mode

## 0 Perfect circle designation

 CW rotation direction1 Perfect circle designation CCW rotation direction
c1: Center point coordinate value -999,999,999 ~ 999,999,999 pls
*) It is the center point coordinate value of the axis (X axis) with 2 axes enabled in as 1 to 3 and the axis number is small, and is the relative position from the current position.
c2 : Center point coordinate value -999,999,999 ~ 999,999,999 pls
*) It is the center point coordinate value of the axis ( Y axis) with the larger axis number on the 2 axes enabled in as $1 \sim 3$, and is the relative position from the current position.
hl : Linear movement amount setting -999,999,999 ~ 999,999,999 pls
${ }^{*}$ ) The amount of linear movement of the axis ( $Z$ axis) disabled in as1 to 3 , and the amount of movement per rotation from the current position. For example, if the number of rotations is specified as 2 rotations and the linear movement amount setting is 100pls, the total linear movement amount will be 200pls.
$r$ : Rotation value $\quad 1 \sim 1000$
0 : General-purpose output instruction $0 \sim 63$
s : Operating speed $\quad 1 \sim 4$ (Minimum velocity of c 1 axis (S))
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
$\mathrm{tm}:$ Trigger mode 0 Drive pulse designation
1 Specify a certain time
2 + Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation
*) Output after positioning of all effective axes
5 Trigger issuance prohibited
6 Take over the previous trigger setting

|  | *) When specifying the drive pulse, + scale pulse, andscale pulse, set the set speed to 56 kpps or less. |
| :---: | :---: |
| ta : Trigger target axis | 1~3 |
| tv : Trigger output interval | Trigger mode 0: 2~30000 pls |
|  | Trigger mode $1: 1 \sim 10000$ (0.01sec uint) |
|  | Trigger mode 2,3 : $\pm 2 \sim 30000$ pls |

## - Example

Helical interpolation operation on the 1500th line, 1st and 2nd axis controllable, arc mode: perfect circle specification CW rotation direction, 1st axis center point coordinate value: Opls, 2nd axis center point coordinate value: 200pls, 3rd axis movement Destination coordinates: 100pls, general-purpose output instruction: 0, operating speed: 1, waiting time: 0 seconds, trigger mode: drive pulse, trigger target axis: 1st axis, trigger output interval: 100pls set

| Send | Reply |
| :---: | :--- |
| P:SET,1500,EH,1,1,0,0,0,200,100,1,0,1,0,0,1,100 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

(7) Operation pattern : Helical interpolation EH (Angle)

Performs helical interpolation operation. (angle specification).
*) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.

- Command format

Send1) P:SET,n,p,as1,as2, as3,cm,c1,c2,al,hl,o,s,w,tm,ta,tv
Send2) P:SET,n,p,as1,as2, as3,cm,c1,c2,al,hl,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Send1), and if the trigger mode is other than that, Send2).
*) If the trigger mode is for a certain period of time, specify 1 for the trigger target axis ta.
*) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.

- Parameters

Send) n : Program numbe

$$
1 \sim 4000
$$

p : Driving pattern
EH
as1: 1st axis state 0 (axis invalid) or 1 (axis controllable)
as2: 2nd axis state 0 (axis invalid) or 1 (axis controllable)
as3: 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
*) Enable 2 axes of circle interpolation axis. If all are enabled, a command error will occur.
cm : Circle mode

## 2 Angle specification CW rotation direction

3 Angle specification CCW rotation direction
c1: Center point coordinate value -999,999,999 ~ 999,999,999 pls
*) It is the center point coordinate value of the axis ( X axis) with 2 axes enabled in as1 to 3 and the axis number is small, and is the relative position from the current position.
c2 : Center point coordinate value -999,999,999 ~ 999,999,999 pls
*) It is the center point coordinate value of the axis ( Y axis) with the larger axis number on the 2 axes enabled in as 1 to 3 , and is the relative position from the current position.
al : Angle
0 ~ 360000 (Degree)
hl : Linear movement amount setting -999,999,999 ~ 999,999,999 pls
*) If the linear movement destination coordinate value of the axis ( $Z$ axis) disabled in as1 to 3 and the angle is less than $360^{\circ}$, the amount of movement until moving that angle is $360^{\circ}$ or more, per rotation. It will be the amount of movement. For example, if the linear movement amount is set to 100 pls at $540^{\circ}$ (one and a half rotations), the total linear movement amount will be 150pls.
*) Since the total linear movement amount is calculated, an error will occur. Please use it after confirming it with the actual machine.
o: General-purpose output instruction $0 \sim 63$
s : Operating speed $\quad 1 \sim 4$ (Minimum speed of c 1 axis (S))
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)

| $\mathrm{tm}:$ Trigger mode | 0 | Drive pulse designation |
| :--- | :--- | :--- |
|  | 1 Specify a certain time |  |
|  | 2 + Scale pulse designation |  |
|  | 3 - Scale pulse designation |  |
|  | 4 One-shot trigger designation |  |
|  | $\left.{ }^{*}\right)$ Output after positioning of all effective axes |  |
|  | 5 Trigger issuance prohibited |  |
|  | 6 Take over the previous trigger setting |  |
|  | $\left.{ }^{*}\right)$ When specifying the drive pulse, + scale pulse, and- |  |
|  | scale pulse, set the set speed to 56 kpps or less. |  |
| ta : Trigger target axis | $1 \sim 3$ |  |
| tv : Trigger output interval | Trigger mode $0: 2 \sim 30000$ pls |  |
|  | Trigger mode $1: 1 \sim 10000(0.01$ sec uint $)$ |  |
|  | Trigger mode $2,3: \pm 2 \sim 30000$ pls |  |

## - Example

Helical interpolation operation on the 1500th line, 1st and 2nd axis controllable, arc mode: angle specification CW rotation direction, 1st axis center point coordinate value: Opls, 2nd axis center point coordinate value: 200pls, angle: 90 degrees, 3 rd axis move destination coordinates: 100pls, general-purpose output instruction: 0 , movement speed: 1 , standby time: 0 seconds, trigger mode: drive pulse, trigger target axis: 1st axis, trigger output interval: 100pls set

| Send | Reply |
| :---: | :---: |
| P:SET,1500,EH, $1,1,0,2,0,200,90,100,0,1,0,0,1,100$ | OK or NG |

*) In the case of Busy, it will be " NG " and this command cannot be executed.

(8) Operation pattern : Helical interpolation EH (Passing point)

Performs helical interpolation operation. (passing point specification).
*) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.

- Command format

Send1) P:SET,n,p,as1,as2, as3,cm,p1,p2,e1,e2,hl,o,s,w,tm,ta,tv
Send2) P:SET,n,p,as1,as2, as3,cm,p1,p2,e1,e2,hl,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Send1), and if the trigger mode is other than that, Send2).
*) If the trigger mode is for a certain period of time, specify 1 for the trigger target axis ta.

- Parameters

Send) n: Program number $1 \sim 4000$
p : Driving pattern EH
as1: 1st axis state 0 (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state 0 (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state 0 (axis invalid) or 1 (axis controllable)
${ }^{*}$ ) Enable 2 axes of circle interpolation axis. If all are enabled, a command error will occur.
cm : Circle mode
4 Specifying a passing point CW rotation direction
5 Specifying a passing point
CCW rotation direction
p1: Passing point coordinate value -999,999,999~999,999,999 pls
*) It is the center point coordinate value of the axis ( X axis) with 2 axes enabled in as1 to 3 and the axis number is small, and is the relative position from the current position.
p2 : Passing point coordinate value -999,999,999 ~ 999,999,999 pls
*) It is the center point coordinate value of the axis ( Y axis) with the larger axis number on the 2 axes enabled in as $1 \sim 3$, and is the relative position from the current position.
e1: End point coordinate value -999,999,999 ~ 999,999,999 pls
*) It is the center point coordinate value of the axis ( X axis) with 2 axes enabled in as 1 to 3 and the axis number is small, and is the relative position from the current position.
e2 : End point coordinate value -999,999,999 ~ 999,999,999 pls
*) It is the center point coordinate value of the axis ( Y axis) with the larger axis number on the 2 axes enabled in as $1 \sim 3$, and is the relative position from the current position.
hl : Linear destination coordinate value -999,999,999~999,999,999 pls
*) The linear movement destination coordinate value of the axis ( $Z$ axis) disabled in as1 to 3 , which is the relative position from the current position.
o: General-purpose output instruction $0 \sim 63$
$s$ : Operating speed $\quad 1 \sim 4$ (Minimum velocity of p1, e1 axis (S))
$w:$ Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode
ta : Trigger target axis
tv : Trigger output interval

0 Drive pulse designation
1 Specify a certain time
$2+$ Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation
*) Output after positioning of all effective axes
5 Trigger issuance prohibited
6 Take over the previous trigger setting
${ }^{*}$ ) When specifying the drive pulse, + scale pulse, andscale pulse, set the set speed to 56 kpps or less.
1 ~ 3
Trigger mode $0: 2 \sim 30000$ pls
Trigger mode 1: 1~10000 (0.01sec uint)
Trigger mode 2,3: $\pm 2 \sim 30000$ pls

## - Example

On the 1500th line, arc interpolation operation, 2nd and 3rd axis controllable, arc mode: passing point specification CW rotation direction, 2nd axis passing point coordinate value: -100pls, 3rd axis passing point coordinate value: 50pls, 2nd axis End point coordinate value: -150pls, 3rd axis end point coordinate value: 50pls, general-purpose output instruction: 0 , movement speed: 1 , standby time: 0 seconds, trigger mode: drive pulse, trigger target axis: 2nd axis, trigger output interval 10pls set

| Send | Reply |
| :---: | :---: |
| P:SET,1500,EH,0,1,1,4,-100,50,-150,100,50,0,1,0,0,2,10 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

(9) Operation pattern : Registered coordinate operation PAV

Executes the operation to the coordinate value registered by the "PAV:" command.
*) The pulse speed and the movement speed per pulse must be the same between the interpolation axes. If these are different, the correct interpolation operation will not be performed.

- Command format

Send1) P:SET,n,p,as1,as2,as3,m,o,s,w,tm,ta,tv
Send2) P:SET,n,p,as1,as2,as3,m,o,s,w,tm
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Send1), and if the trigger mode is other than that, Send2).

- Parameters

Send) $n$ : Program number $1 \sim 4000$
p : Driving pattern PAV
as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state 0 (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state 0 (axis invalid) or 1 (axis controllable)
m : Coordinate value information registration number $1 \sim 20$
o: General-purpose output instruction $0 \sim 63$
$s$ : Operating speed $\quad 1 \sim 4$
w : Wait time $\quad 0 \sim 2560$ (0.1 sec unit)
tm : Trigger mode 0 Drive pulse designation
1 Specify a certain time
$2+$ Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation
*) Output after positioning of all effective axes
5 Trigger issuance prohibited
6 Take over the previous trigger setting
${ }^{*}$ ) When specifying the drive pulse, + scale pulse, andscale pulse, set the set speed to 56 kpps or less.
ta : Trigger target axis $\quad 1 \sim 3$
tv : Trigger output interval Trigger mode 0:2~30000 pls
Trigger mode $1: 1 \sim 10000$ ( 0.01 sec uint)
Trigger mode 2,3 : $\pm 2$ ~ 30000 pls

- Example

On the 1500th line, registration position operation, 1st, 2nd, 3rd axis controllable, 1st axis registration number: 1, 2nd axis registration number: 2, 3rd axis registration number: 3, general-purpose output instruction: 0, movement speed 1, Wait time: 0 seconds, Trigger mode: Drive pulse, Trigger target axis: 1st axis, Trigger output interval: 100pls set

| Send | Reply |
| :---: | :---: |
| P:SET,1500,PAV, $1,1,1,1,2,3,0,1,0,0,1,100$ | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(10) Operation pattern : Mechanical origin return H Performs mechanical origin return.

- Command format

Send) P:SET,n,p,as1,as2,as3,o,w,tm

- Parameters

Send) $n$ : Program number $1 \sim 4000$ p : Driving pattern $\quad \mathrm{H}$ as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable) as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable) as3: 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
o: General-purpose output instruction 0 ~ 63
w : Wait time $0 \sim 2560$ ( 0.1 sec unit)
$\mathrm{tm}:$ Trigger mode 4 One-shot trigger specification
*) Output after positioning of all effective axes
5 Trigger issuance prohibited

- Example

Mechanical origin return operation, 1st, 2nd and 3rd axis controllable, general-purpose output instruction: 0 , standby time: 0 seconds, trigger mode: one-shot trigger is set on the 1500th line.

| Send | Reply |
| :--- | :--- |
| P:SET,1500,H,1,1,1,0,0,4 | OK or NG |

${ }^{\text {*) }}$ In the case of Busy, it will be " NG " and this command cannot be executed.
(11) Operation pattern : Logical origin return Z Performs logical origin return.

- Command format

Send) P:SET,n,p,as1,as2,as3,o,s,w,tm

- Parameters

Send) n : Program number $1 \sim 4000$
p : Driving pattern Z
as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3: 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
o: General-purpose output instruction $0 \sim 63$
s : Operating speed $\quad 1 \sim 4$
w : Wait time $\quad 0 \sim 2560$ (0.1 sec unit)
tm : Trigger mode 4 One-shot trigger specification
*) Output after positioning of all effective axes
5 Trigger issuance prohibited

- Example

Mechanical origin return operation, 1st, 2nd and 3rd axis controllable, general-purpose output instruction: 0 , standby time: 0 seconds, trigger mode: one-shot trigger is set on the 1500th line.

| Send | Reply |
| :---: | :--- |
| P:SET,1500,Z,1,1,1,0,1,0,4 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(12) Operation pattern : Logical origin setting R

Performs the logical origin setting.

- Command format

Send) P:SET,n,p,as1,as2,as3

- Parameters

Send) n : Program number
p : Driving pattern
as1: 1st axis state
as2: 2nd axis state
as3: 3rd axis state

1 ~ 4000
Z
0 (axis invalid) or 1 (axis controllable)
0 (axis invalid) or 1 (axis controllable)
0 (axis invalid) or 1 (axis controllable)

- Example

Set the logical origin and enable the 1st, 2nd, and 3rd axes on the 1500th line.

| Send | Reply |
| :--- | :--- |
| P:SET,1500,R,1,1,1 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(13) Operation pattern : General-purpose I/O INPUT

Wait until the specified I / O terminal is in the general-purpose input state.

- Command format

Send) P:SET,n,p,i

- Parameters

Send) $n$ : Program number $1 \sim 4000$
p : Driving pattern INPUT
i : General-purpose input status $0 \sim 63$

- Example

General-purpose input, general-purpose input status: 1 (only IN1 is ON) is set on the 1500th line.

| Send | Reply |
| :--- | :--- |
| P:SET,1500,INPUT,1 | OK or NG |

${ }^{\text {* }}$ ) In the case of Busy, it will be "NG" and this command cannot be executed.
(14) Operation pattern : Loop start F

Set the loop start position. Loop ends A loop within the same loop nest a specified number of times between " N ".

- Command format

Send) P:SET,n,p,ll,lv

- Parameters

Send) $n$ : Program number $1 \sim 4000$
p : Driving pattern F
II: Loop nest 1 ~ 9
Iv : Loop value $\quad 1 \sim 65535$

## - Example

Set loop start, loop nest: 1, loop count: 100 on line 1500

| Send | Reply |
| :--- | :--- |
| P:SET,1500,F,1,100 | OK or NG |

${ }^{\text {*) }}$ In the case of Busy, it will be "NG" and this command cannot be executed.
(15) Operation pattern : Loop end N

Set the loop end position. It returns to the loop start "F" position of the specified loop nest and executes the next line after being executed the specified number of times.

- Command format

Send) P:SET,n,p,II

- Parameters

Send) $n$ : Program number $1 \sim 4000$
p : Driving pattern N
II: Loop nest $\quad 1 \sim 9$

- Example

Set loop end, loop nest: 1 on line 1500

| Send | Reply |
| :--- | :--- |
| P:SET,1500,N,1 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(16) Operation pattern : End of execution END

Specify the execution end line.
*) If up to the 4000 th line is registered, it is not necessary to register "END".
*) "END" is registered in the first line of the initial value of the program.

- Command format

Send) P:SET,n,p

- Parameters

Send) $n$ : Program number $1 \sim 4000$
p : Driving pattern END

- Example

Set the end of execution on the 1500th line

| Send | Reply |
| :--- | :--- |
| P:SET,1500,END | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(17) Operation pattern : Unregistered NONE

Delete the contents of the already registered line and register the unregistered line that does nothing.
*) As the initial value of the program, "NONE" is registered from the first line onward.

- Command format

Send) P:SET,n,p

- Parameters

Send) n : Program number $1 \sim 4000$
p : Driving pattern NONE

- Example

Delete the registered contents on the 1500th line

| Send | Reply |
| :---: | :--- |
| P:SET, 1500, NONE | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
99) P:GET command (Program 13 : Get program line designation)

- Description

Get the program contents by specifying a line in the program edit mode.
(1) Operation pattern : Relative value operation M, Absolute value operation A, Linear interpolation K

- Command format

Send) P:GEL,n
Reply) p,as1,as2,as3,ap1,ap2,ap3,o,s,w,tm,ta,tv
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Reply1), and if the trigger mode is other than that, Reply2).

- Parameters

Send) n: Program number $1 \sim 4000$
Reply) p: Driving pattern M or A or K
as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
ap1: 1st axis coordinate value -999,999,999 ~ 999,999,999 pls
ap2 : 2nd axis coordinate value -999,999,999 ~ 999,999,999 pls
ap3 : 3rd axis coordinate value -999,999,999 ~ 999,999,999 pls
o : General-purpose output instruction $0 \sim 63$
s: Operating speed $1 \sim 4$
w : Wait time $0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 0 Drive pulse designation
1 Specify a certain time
2 + Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation
) Output after positioning of all effective axes
5 Trigger issuance prohibited
6 Take over the previous trigger setting
ta : Trigger target axis $1 \sim 3$
tv : Trigger output interval Trigger mode 0:2~30000 pls
Trigger mode 1 : $1 \sim 10000$ ( 0.01 sec uint)
Trigger mode 2,3 : $\pm 2$ ~ 30000 pls

## - Example

Line 1500 is relative value operation, 1st, 2nd, 3rd axis controllable, 1st axis movement amount: 100pls, 2nd axis movement amount: 200pls, 3rd axis movement amount: 300pls, general-purpose output instruction: 0 , movement speed 1, Wait time: 0 seconds, Trigger mode: Drive pulse, Trigger target axis: 1st axis, Trigger output interval: Registered at 100pls

| Send | Reply |
| :--- | :---: |
| P:GET,1500 | $\mathrm{M}, 1,1,1,100,200,300,0,1,0,0,1,100$ |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(2) Operation pattern : Relative continuous operation CM, Absolute continuous operation CA

- Command format

Send) P:GEL,n
Reply) p,as1,as2,as3,ap1,ap2,ap3,o,s,w,tm

- Parameters

| Send) | $\mathrm{n}:$ Program number | $1 \sim 4000$ |
| :--- | :--- | :--- |
| Reply) | $\mathrm{p}:$ Driving pattern | CM or CA |
|  | as1: 1st axis state | 0 (axis invalid) or 1 (axis controllable) |
|  | as2 $: 2$ nd axis state | 0 (axis invalid) or 1 (axis controllable) |
|  | as3 $: 3 r d$ axis state | 0 (axis invalid) or 1 (axis controllable) |

ap1: 1st axis coordinate value -999,999,999 ~ 999,999,999 pls
ap2 : 2nd axis coordinate value -999,999,999 ~ 999,999,999 pls
ap3: 3rd axis coordinate value -999,999,999 ~ 999,999,999 pls
o: General-purpose output instruction 0~63
s: Operating speed $1 \sim 4$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 0 Drive pulse designation
2 Scale pulse designation

## - Example

Line 1500 is relative continuous operation, controllable only for 1 st axis, 1 st axis movement amount: 100pls, 2nd axis movement amount: Opls, 3rd axis movement amount: Opls, general-purpose output instruction: 0, movement speed: 1, Wait time: 0 seconds, Trigger mode: Register with drive pulse

| Send | Reply |
| :--- | :--- |
| P:GET,1500 | CM, $1,0,0,100,0,0,0,1,0,0$ |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(3) Operation pattern : Arc interpolation E (Perfect circle)

- Command format

Send) P:GEL,n
Reply) p,as1,as2, as3,cm,c1,c2,o,s,w,tm,ta,tv
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Reply1), and if the trigger mode is other than that, Reply2).

- Parameters

Send) n : Program number $1 \sim 4000$


- Example

Line 1500 is arc interpolation operation, 1st and 3rd axis controllable, arc mode: perfect circle specification CW rotation direction, 1st axis center point coordinate value: 100pls, 3rd axis center point coordinate value: 200pls, general-purpose output instruction: 0 , operating speed: 1 , standby time: 0 seconds, trigger mode: drive pulse, trigger target axis: 1 st axis, trigger output interval: 100pls registered

| Send | Reply |
| :--- | :--- |
| P:GET,1500 | $\mathrm{E}, 1,0,1,0,100,200,0,1,0,0,1,100$ |

*) In the case of Busy, it will be " NG " and this command cannot be executed.
(4) Operation pattern : Arc interpolation E (Angle)

- Command format

Send) P:GEL,n
Reply) p,as1,as2, as3,cm,c1,c2,al,o,s,w,tm,ta,tv
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Reply1), and if the trigger mode is other than that, Reply2).

- Parameters

Send) $n$ : Program number $1 \sim 4000$
Reply) p: Driving pattern E
as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3: 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
cm : Circle mode 2 Angle specification
CW rotation direction
3 Angle specification CCW rotation direction
c1: Center point coordinate value -999,999,999 ~ 999,999,999 pls
c2 : Center point coordinate value -999,999,999 ~ 999,999,999 pls
al : Angle $0 \sim 360$ (Degree)
o : General-purpose output instruction $0 \sim 63$
s : Operating speed $1 \sim 4$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 0 Drive pulse designation
1 Specify a certain time
2 + Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation
*) Output after positioning of all effective axes
5 Trigger issuance prohibited
6 Take over the previous trigger setting
ta: Trigger target axis $1 \sim 3$
tv : Trigger output interval Trigger mode 0:2~30000 pls
Trigger mode 1: $1 \sim 10000$ ( 0.01 sec uint)
Trigger mode 2,3: $\pm 2 \sim 30000$ pls

- Example

Line 1500 is arc interpolation operation, 1st and 2nd axis controllable, arc mode: angle specification CW rotation direction, 1st axis center point coordinate value: 100pls, 2nd axis center point coordinate value: -200pls, angle: 90 degrees, General-purpose output instruction: 0, Operating speed: 1, Standby time: 0 seconds, Trigger mode: Drive pulse, Trigger target axis: 1st axis, Trigger output interval: Registered at 100pls

| Send | Reply |
| :---: | :---: |
| P:GET, 1500 | E, $1,1,0,2,100,-200,90,0,1,0,0,1,100$ |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(5) Operation pattern : Arc interpolation E (Passing point)

- Command format

Send) P:GEL,n
Reply) p,as1,as2, as3,cm,p1,p2,e1,e2,o,s,w,tm,ta,tv
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Reply1), and if the trigger mode is other than that, Reply2).

- Parameters

| Send) | $\mathrm{n}:$ Program number | $1 \sim 4000$ |
| :--- | :--- | :--- |
| Reply) | $\mathrm{p}:$ Driving pattern | E |
|  | as1 $: 1$ st axis state | 0 (axis invalid) or 1 (axis controllable) |
|  | as2 $: 2$ nd axis state | 0 (axis invalid) or 1 (axis controllable) |
|  | as3 $: 3 r d$ axis state | 0 (axis invalid) or 1 (axis controllable) |
|  | cm : Circle mode | 4 Specifying a passing point |
|  |  | CW rotation direction |

5 Specifying a passing point CCW rotation direction
p1: Passing point coordinate value -999,999,999 ~ 999,999,999 pls
p2 : Passing point coordinate value -999,999,999 ~ 999,999,999 pls
e1: End point coordinate value -999,999,999 ~ 999,999,999 pls
e2 : End point coordinate value -999,999,999 ~ 999,999,999 pls
o : General-purpose output instruction $0 \sim 63$
s: Operating speed $1 \sim 4$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 0 Drive pulse designation
1 Specify a certain time
2 + Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation
*) Output after positioning of all effective axes
5 Trigger issuance prohibited
6 Take over the previous trigger setting
ta : Trigger target axis
1 ~3
tv : Trigger output interval
Trigger mode 0 : $2 \sim 30000$ pls
Trigger mode 1 : $1 \sim 10000$ ( 0.01 sec uint)
Trigger mode 2,3: $\pm 2 \sim 30000$ pls

- Example

Line 1500 is arc interpolation operation, 2nd and 3rd axis controllable, arc mode: passing point specification CW rotation direction, 2nd axis passing point coordinate value: 100pls, 3rd axis passing point coordinate value: 150pls, 2nd axis end point Coordinate value: 500pls, 3rd axis end point coordinate value: 200pls, general-purpose output instruction: 0 , movement speed: 1 , standby time: 0 seconds, trigger mode: drive pulse, trigger target axis: 2nd axis, trigger output interval: Register at 100pls

| Send | Reply |
| :---: | :---: |
| P:GET,1500 | E, $, 1,1,1,4,100,150,500,200,0,1,0,0,2,100$ |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(6) Operation pattern : Helical interpolation EH (Perfect circle)

- Command format

Send) P:GEL,n
Reply) p,as1,as2, as3,cm,c1,c2,hl,r,o,s,w,tm,ta,tv
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Reply1), and if the trigger mode is other than that, Reply2).

- Parameters

Send) $n$ : Program number $1 \sim 4000$
Reply) p: Driving pattern
as1: 1st axis state
EH
0 (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3 : 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
cm : Circle mode
0 Perfect circle designation CW rotation direction
1 Perfect circle designation CCW rotation direction
c1: Center point coordinate value -999,999,999 ~ 999,999,999 pls
c2 : Center point coordinate value -999,999,999 ~ 999,999,999 pls
hl : Linear destination coordinate value -999,999,999~999,999,999 pls
$r$ : Rotation value $1 \sim 1000$
o : General-purpose output instruction $0 \sim 63$
s: Operating speed $1 \sim 4$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 0 Drive pulse designation
1 Specify a certain time
2 + Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation
*) Output after positioning of all effective axes
5 Trigger issuance prohibited
6 Take over the previous trigger setting
ta: Trigger target axis $1 \sim 3$
tv : Trigger output interval Trigger mode 0:2~30000 pls
Trigger mode 1 : $1 \sim 10000$ ( 0.01 sec uint)
Trigger mode 2,3: $\pm 2 \sim 30000$ pls

- Example

Line 1500 is helical interpolation operation, 1st and 2nd axis controllable, arc mode: perfect circle specification CW rotation direction, 1st axis center point coordinate value: Opls, 2nd axis center point coordinate value: 200pls, 3rd axis movement Destination coordinates: 100pls, general-purpose output instruction: 0 , operating speed: 1 , waiting time: 0 seconds, trigger mode: drive pulse, trigger target axis: 1st axis, trigger output interval: registered at 100pls

| Send |  |
| ---: | ---: |
| P:GET,1500 | EH, $1,1,0,0,0,200,100,0,1,0,0,1,100$ |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(7) Operation pattern : Helical interpolation EH (Angle)

- Command format

Send) P:GEL,n
Reply) p,as1,as2, as3,cm,c1,c2,al,hl,o,s,w,tm,ta,tv
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Reply1), and if the trigger mode is other than that, Reply2).

- Parameters

Send) $n$ : Program number $1 \sim 4000$
Reply) p: Driving pattern
as1: 1st axis state
EH
as2 : 2nd axis state
as3: 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
cm : Circle mode
2 Angle specification
CW rotation direction
3 Angle specification CCW rotation direction
c1: Center point coordinate value -999,999,999 ~ 999,999,999 pls
c2 : Center point coordinate value -999,999,999~999,999,999 pls
al : Angle $0 \sim 360000$ (Degree)
hl : Linear destination coordinate value -999,999,999 ~ 999,999,999 pls
o: General-purpose output instruction $0 \sim 63$
s: Operating speed $1 \sim 4$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 0 Drive pulse designation
1 Specify a certain time
2 + Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation
*) Output after positioning of all effective axes
5 Trigger issuance prohibited
6 Take over the previous trigger setting
ta : Trigger target axis
1 ~3
tv : Trigger output interval Trigger mode 0:2~30000 pls
Trigger mode 1 : $1 \sim 10000$ ( 0.01 sec uint)
Trigger mode 2,3: $\pm 2 \sim 30000$ pls

- Example

Line 1500 is helical interpolation operation, 1st and 2nd axis controllable, arc mode: angle specification CW rotation direction, 1st axis center point coordinate value: Opls, 2nd axis center point coordinate value: 200pls, angle: 90 degrees, 3rd axis move destination coordinates: 100pls, general-purpose output instruction: 0 , movement speed: 1 , standby time: 0 seconds, trigger mode: drive pulse, trigger target axis: 1st axis, trigger output interval: 100pls

| Send | Reply |
| ---: | :---: |
| P:GET,1500 | EH, $1,1,0,2,0,200,90,100,0,1,0,0,1,100$ |

${ }^{*}$ ) In the case of Busy, it will be " NG " and this command cannot be executed.
(8) Operation pattern : Helical interpolation EH (Passing point)

- Command format

Send) P:GEL,n
Reply) p,as1,as2, as3,cm,p1,p2,e1,e2,hl,o,s,w,tm,ta,tv
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Reply1), and if the trigger mode is other than that, Reply2).

- Parameters

| Send) | $\mathrm{n}:$ Program number | $1 \sim 4000$ |
| :--- | :--- | :--- |
| Reply) | $\mathrm{p}:$ Driving pattern | EH |
|  | as1 $: 1$ st axis state | 0 (axis invalid) or 1 (axis controllable) |
|  | as2 $: 2$ nd axis state | 0 (axis invalid) or 1 (axis controllable) |
|  | as3 $: 3 r d$ axis state | 0 (axis invalid) or 1 (axis controllable) |
|  | cm : Circle mode | 4 Specifying a passing point |
|  |  | CW rotation direction |

5 Specifying a passing point CW rotation direction
p1: Passing point coordinate value -999,999,999 ~ 999,999,999 pls
p2 : Passing point coordinate value -999,999,999 ~ 999,999,999 pls
e1: End point coordinate value -999,999,999 ~ 999,999,999 pls
e2 : End point coordinate value -999,999,999~999,999,999 pls
hl : Linear destination coordinate value -999,999,999 ~ 999,999,999 pls
0 : General-purpose output instruction $0 \sim 63$
s : Operating speed $\quad 1 \sim 4$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 0 Drive pulse designation
1 Specify a certain time
2 + Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation
*) Output after positioning of all effective axes
5 Trigger issuance prohibited
6 Take over the previous trigger setting
ta : Trigger target axis $1 \sim 3$
tv : Trigger output interval Trigger mode 0:2~30000 pls
Trigger mode 1 : $1 \sim 10000$ ( 0.01 sec uint)
Trigger mode 2,3: $\pm 2 \sim 30000$ pls

- Example

Line 1500 is arc interpolation operation, 2nd and 3rd axis controllable, arc mode: passing point specification CW rotation direction, 2nd axis passing point coordinate value: -100pls, 3rd axis passing point coordinate value: 50pls, 2nd axis End point coordinate value: -150pls, 3rd axis end point coordinate value: 50pls, general-purpose output instruction: 0 , movement speed: 1 , standby time: 0 seconds, trigger mode: drive pulse, trigger target axis: 2nd axis, trigger output interval Register at 10pls

| Send | Reply |
| :---: | :---: |
| P:GET,1500 | EH, $0,1,1,4,-100,50,-150,100,50,0,1,0,0,2,10$ |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(9) Operation pattern : Registered coordinate operation PAV

- Command format

Send) P:GEL,n
Reply) p,as1,as2,as3,o,s,w,tm,ta,tv
*) If the trigger mode is drive pulse, fixed time, or scale pulse, the command format is Reply1), and if the trigger mode is other than that, Reply2).

- Parameters
Send) $n$ : Program number $1 \sim 4000$

Reply) p: Driving pattern as1: 1st axis state as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable) as3 : 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable) o : General-purpose output instruction $0 \sim 63$
s : Operating speed
1 ~ 4
w : Wait time
tm : Trigger mode 0 Drive pulse designation
1 Specify a certain time
2 + Scale pulse designation
3 - Scale pulse designation
4 One-shot trigger designation
*) Output after positioning of all effective axes
5 Trigger issuance prohibited
6 Take over the previous trigger setting
ta: Trigger target axis $1 \sim 3$
tv : Trigger output interval
Trigger mode $0: 2 \sim 30000 \mathrm{pls}$
Trigger mode $1: 1 \sim 10000$ ( 0.01 sec uint)
Trigger mode 2,3 : $\pm 2$ ~ 30000 pls

- Example

Line 1500 is registration position operation, 1st, 2nd, 3rd axis controllable, 1st axis registration number: $1,2 n d$ axis registration number: 2 , 3rd axis registration number: 3 , general-purpose output instruction: 0, movement speed 1, Wait time: 0 seconds, Trigger mode: Drive pulse, Trigger target axis: 1st axis, Trigger output interval: Registered at 100pls

| Send | Reply |
| :--- | :---: |
| P:GET,1500 | PAV, $1,1,1,1,2,3,0,1,0,0,1,100$ |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(10) Operation pattern : Mechanical origin return H

- Command format

Send) P:GEL,n
Reply) p,as1,as2,as3,o,w,tm

- Parameters

Send) n : Program number $1 \sim 4000$
Reply) p: Driving pattern
H
as 1 : 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3: 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
o : General-purpose output instruction $0 \sim 63$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 4 One-shot trigger specification
5 Trigger issuance prohibited

- Example

Line 1500 is mechanical origin return operation, 1st, 2nd, 3rd axis controllable, generalpurpose output instruction: 0 , standby time: 0 seconds, trigger mode: registered with oneshot trigger

| Send | Reply |
| :--- | :--- |
| P:GET,1500 | $\mathrm{H}, 1,1,1,0,0,4$ |

${ }^{*}$ ) In the case of Busy, it will be " NG " and this command cannot be executed.
(11) Operation pattern : Logical origin return Z

- Command format

Send) P:GEL,n
Reply) p,as1,as2,as3,o,s,w,tm

- Parameters

Send) n : Program number $1 \sim 4000$
Reply) p: Driving pattern Z
as 1 : 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
as3: 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
o: General-purpose output instruction $0 \sim 63$
s : Operating speed $1 \sim 4$
w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
tm : Trigger mode 4 One-shot trigger specification
5 Trigger issuance prohibited

- Example

Line 1500 is logical origin return operation, 1st, 2nd, 3rd axis controllable, general-purpose output instruction: 0 , standby time: 0 seconds, trigger mode: registered with one-shot trigger

| Send | Reply |
| :--- | :--- |
| P:GET,1500 | $Z, 1,1,1,0,1,0,4$ |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(12) Operation pattern : Logical origin setting R

- Command format

Send) P:GEL,n
Reply) p,as1,as2,as3

- Parameters

Send) n : Program number
1 ~ 4000
Reply) p: Driving pattern
as1: 1st axis state
Z
as : 2nd axi sate 0 (axisivalid) or 1 (axis contolabe)
as3: 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)

- Example

The 1500th line is registered with the logical origin setting and the 1st, 2nd, and 3rd axes controllable.

| Send | Reply |
| :--- | :--- |
| P:GET,1500 | R,1,1,1 |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(13) Operation pattern : General-purpose I/O INPUT

- Command format

Send) P:GEL,n
Reply) p,i

- Parameters

Send) n : Program number $1 \sim 4000$
Reply) p: Driving pattern INPUT
$i$ : General-purpose input status $0 \sim 63$

- Example

Line 1500 is registered with general-purpose input, general-purpose input status: 1 (only IN1 is ON)

| Send | Reply |
| :--- | :--- |
| P:GET,1500 | INPUT,1 |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(14) Operation pattern : Loop start F

- Command format

Send) P:GEL,n
Reply) p,II,Iv

- Parameters

Send) n : Program number $1 \sim 4000$
Reply) p: Driving pattern F
II: Loop nest 1 ~ 9
Iv : Loop value $\quad 1 \sim 65535$

- Example
"Loop start", "Loop hierarchy: 1", "Loop count: 100" are registered in the 1500th line.

| Send | Reply |
| :--- | :--- |
| P:GET,1500 F,1,100 |  |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(15) Operation pattern : Loop end N

- Command format

Send) P:GEL,n
Reply) p,II

- Parameters

Send) n : Program number $1 \sim 4000$
Reply) p : Driving pattern N
II : Loop nest 1 ~ 9

- Example

The 1500th line is registered with " loop end " and "loop hierarchy: 1".

| Send | Reply |
| :--- | :--- |
| P:GET,1500 | $\mathrm{N}, 1$ |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(16) Operation pattern : End of execution END

- Command format

Send) P:GEL,n
Reply) $p$

- Parameters

Send) n : Program number $1 \sim 4000$
Reply) p: Driving pattern END

- Example

Line 1500 is registered at the end of execution

| Send | Reply |
| :--- | :--- |
| P:GET,1500 END |  |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
(17) Operation pattern : Unregistered NONE

- Command format

Send) P:GEL,n
Reply) $p$

- Parameters

Send) $n$ : Program number $1 \sim 4000$
Reply) p: Driving pattern NONE

- Example

Line 1500 is unregistered

| Send | Reply |
| :--- | :--- |
| P:GET,1500 | NONE |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
100)P: INIT command (Program 15 : Delete all lines of the program)

- Description

Delete all the program contents in the program edit mode.

- Command format

Send) P:INIT

- Example

| Send | Reply |
| :--- | :--- |
| P:INIT | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
101)MS:ON command (Memory switch operation 1 : Edit mode transition)

- Description

Moves from host mode to memory switch edit mode. The commands that can be used in the memory switch edit mode are "MS: OFF", "MS: SET", "MS: GET", "MS: DEF", and "MS: DEFR".

- Command format

Send) MS:ON

- Example

| Send | Reply |
| :--- | :--- |
| MS:ON | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.

- Commands available in memory switch edit mode

| *IDN? | ?: | MS:OFF | MS:SET | MS:GET | MS:DEF |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MS:DEFR | MS:SETK | MS:GETK | MS:DEFK | MS:DEFRK |  |
|  |  |  |  |  |  |

102)MS:OFF command (Memory switch operation 2 : Host mode transition)

- Description

Saves the settings and returns from memory switch edit mode to host mode.

- Command format

Send) MS:OFF

- Example

| Send | Reply |
| :--- | :--- |
| MS:OFF | OK or NG |

103)MS:SET command (Memory switch operation 3 : Setting)

- Description

Memory switch Set the contents of the memory switch in the edit mode.

- Command format

Send) MS:SET,k,n,s

- Parameters

Send) k : Memory switch item

| 0 | GENERAL | General settings |
| :--- | :--- | :--- |
| 1 | INTERFACE | Communication settings |
| 2 | SENSOR | Sensor settings |


| 3 | AXIS | Axis settings |
| :--- | :--- | :--- |
| 4 | MOTOR DRIVER | Motor driver settings |
| 5 | SPEED | Speed settings |
| 6 | ORG | Origin settings |
| 7 | FEEDBACK | Feedback control settings |
| 8 | SOFT LIMIT | Soft limit settings |
| $\mathrm{n}:$ Memory switch content number |  |  |
| $\mathrm{s}:$ Memory switch setting number |  |  |

*) For details on each memory switch item, content number, and setting number, refer to the separate " Preparation and Operation ".

- Example 1

Set "MODE SEL (1)" of "GENERAL (0)" to "MANUAL mode (1)".

| Send | Reply |
| :--- | :--- |
| MS:SET, $0,1,1$ | OK or NG |

- Example 2

Set "SPEED12 (S)" (4) of "SPEED" (5) to "1000pps".

| Send | Reply |
| :--- | :--- |
| MS:SET,5,4,1000 | OK or NG |

104)MS:GET command (Memory switch operation 4 : Get)

- Description

Get the contents of the memory switch in the memory switch edit mode.

- Command format

Send) MS:GET,k,n
Reply) s

- Parameters

Send) k : Memory switch item

0 GENERAL
1 INTERFACE
2 SENSOR
3 AXIS
4 MOTOR DRIVER
5 SPEED
6 ORG
7 FEEDBACK
8 SOFT LIMIT

General settings
Communication settings
Sensor settings
Axis settings
Motor driver settings
Speed settings
Origin settings
Feedback control settings
Soft limit settings
n : Memory switch content number
Reply) s: Memory switch setting number
${ }^{*}$ ) For details on each memory switch item, content number, and setting number, refer to the separate " Preparation and Operation ".

- Example
"MODE SEL (1)" setting of "GENERAL (0)" is "MANUAL mode (1)"

| Send | Reply |
| :--- | :--- |
| MS:GET, 0,1 | 1 |

105)MS:DEF command (Memory switch operation 5 : Initialization)

- Description

Initialize the contents of the memory switch in the memory switch edit mode.

- Command format

Send) MS:DEF,k,n

- Parameters

Send) k: Memory switch item

| 0 | GENERAL | General settings |
| :--- | :--- | :--- |
| 1 | INTERFACE | Communication settings |
| 2 | SENSOR | Sensor settings |
| 3 | AXIS | Axis settings |
| 4 | MOTOR DRIVER | Motor driver settings |
| 5 | SPEED | Speed settings |
| 6 | ORG | Origin settings |
| 7 | FEEDBACK | Feedback control settings |
| 8 | SOFT LIMIT | Soft limit settings |

n : Memory switch content number
*) For details on each memory switch item, and content number, refer to the separate " Preparation and Operation ".

- Example

Initialize "MODE SEL (1)" of "GENERAL (0)" (HOST mode).

| Send | Reply |
| :--- | :--- |
| MS:DEF, 0,1 | OK or NG |

106)MS:DEFR command (Memory switch operation 6 : Get the initial value)

- Description

Get the initial value of the memory switch contents in the memory switch edit mode.

- Command format

Send) MS:DEFR,k,n
Reply) $s$

- Parameters

Send) k : Memory switch item
0 GENERAL General settings
1 INTERFACE
Communication settings
2 SENSOR
Sensor settings
3 AXIS
Axis settings
4 MOTOR DRIVER
5 SPEED
Motor driver settings
6 ORG
7 FEEDBACK
Speed settings
Origin settings
Feedback control settings
8 SOFT LIMIT Soft limit settings
n : Memory switch content number
Reply) s: Default setting number of memory switch contents
*) For details on each memory switch item, content number, and default setting number, refer to the separate " Preparation and Operation ".

- Example

Gets the default setting for "AXIS (0)" for "GENERAL (0)".

| Send | Reply | Memo |
| :---: | :--- | :--- |
| MS:DEFR, 0,0 | 6 | The default setting for "AXIS (0)" is "1 $+2+3(6)$ " |

107)MS:SETK command (Memory switch operation command 3 : Setting command)

- Description

Set all the contents of the memory switch item in the memory switch edit mode.

- Command format

Send) MS:SETK,k,s1,s2,..,sn

- Parameters

Send) k : Memory switch item

| 0 | GENERAL | General settings |
| :--- | :--- | :--- |
| 1 | INTERFACE | Communication settings |
| 2 | SENSOR | Sensor settings |
| 3 | AXIS | Axis settings |
| 4 | MOTOR DRIVER | Motor driver settings |
| 5 | SPEED | Speed settings |
| 6 | ORG | Origin settings |
| 7 | FEEDBACK | Feedback control settings |
| 8 | SOFT LIMIT | Soft limit settings |

s1~sn : Setting number
${ }^{*}$ ) The number of settings varies depending on the memory switch item.
${ }^{*}$ ) For details on each memory switch item, content number, and setting number, refer to the separate " Preparation and Operation ".

- Example

Set the "GENERAL (0)" setting as follows.
No. 1 AXIS: $1+2+3$ (6)
No. 2 MODE SEL: HOST mode (0)
No. 3 SLEEP SEL: ON (1)
No. 4 BEEP SEL: ON (1)
No. 5 JOG X SEL: 1st axis (0)
No. 6 JOG Y SEL: 2nd axis (1)
No. 7 CMD FORMAT: SHOT / FC mode (0)
No. 8 TRG / LEV: Positive logic (0)
No. 9 TRG WIDTH: $10 \mu \mathrm{sec}(0)$

| Send | Reply |
| :---: | :--- |
| MS:SETK, $0,6,0,1,1,0,1,0,0,0$ | OK or NG |

108)MS:GETK command (Memory switch operation 4 : Get)

- Description

Get all the contents of the memory switch item in the memory switch edit mode.

- Command format

Send) MS:GETK,k
Reply) s1,s2,...sn

- Parameters

Send) k : Memory switch item

| 0 | GENERAL | General settings |
| :--- | :--- | :--- |
| 1 | INTERFACE | Communication settings |
| 2 | SENSOR | Sensor settings |
| 3 | AXIS | Axis settings |
| 4 | MOTOR DRIVER | Motor driver settings |
| 5 | SPEED | Speed settings |
| 6 | ORG | Origin settings |
| 7 | FEEDBACK | Feedback control settings |
| 8 | SOFT LIMIT | Soft limit settings |

Reply) s1~sn : Setting number
${ }^{*}$ ) The number of settings varies depending on the memory switch item.
*) For details on each memory switch item, and setting number, refer to the separate " Preparation and Operation ".

- Example

Gets the "GENERAL (0)" setting.
No. 1 AXIS: 1 + $2+3$ (6)
No. 2 MODE SEL: HOST mode (0)
No. 3 SLEEP SEL: ON (1)
No. 4 BEEP SEL: ON (1)
No. 5 JOG X SEL: 1st axis (0)
No. 6 JOG Y SEL: 2nd axis (1)
No. 7 CMD FORMAT: SHOT / FC mode (0)
No. 8 TRG / LEV: Positive logic (0)
No. 9 TRG WIDTH: $10 \mu \mathrm{sec}$ (0)

| Send | Reply |
| :--- | :--- |
| MS:GETK, 0 | $6,0,1,1,0,1,0,0,0$ |

109)MS:DEFK command (Memory switch operation 5 : Initialization)

- Description

Initialize all the contents of the memory switch item in the memory switch edit mode.

- Command format

Send) MS:DEFK,k

- Parameters

Send) k : Memory switch item

| 0 | GENERAL | General settings |
| :--- | :--- | :--- |
| 1 | INTERFACE | Communication settings |
| 2 | SENSOR | Sensor settings |
| 3 | AXIS | Axis settings |


|  | 4 | MOTOR DRIVER | Motor driver settings |
| :---: | :---: | :---: | :---: |
|  | 5 | SPEED | Speed settings |
|  | 6 | ORG | Origin settings |
|  | 7 | FEEDBACK | Feedback control settings |
|  | 8 | SOFT LIMIT | Soft limit settings |
|  |  | *) For details on ea | ch memory switch item, refer to the separate |
| - Example |  |  |  |
| Send |  | Reply | Contents |
| MS:DEFK,0 |  | OK or NG | Initialize GENERAL (0) |

110)MS:DEFRK command (Memory switch operation 6 : Get the initial value)

- Description

Get the initial value of all the contents of the memory switch item in the memory switch edit mode.

- Command format

Send) MS:DEFRK,k
Reply) s1~sn

- Parameters

Send) k : Memory switch item

| 0 | GENERAL | General settings |
| :--- | :--- | :--- |
| 1 | INTERFACE | Communication settings |
| 2 | SENSOR | Sensor settings |
| 3 | AXIS | Axis settings |
| 4 | MOTOR DRIVER | Motor driver settings |
| 5 | SPEED | Speed settings |
| 6 | ORG | Origin settings |
| 7 | FEEDBACK | Feedback control settings |
| 8 | SOFT LIMIT | Soft limit settings |

Reply) s1~sn: Default setting number of memory switch contents
*) The number of settings varies depending on the memory switch item.
*) For details on each memory switch item, and default setting number, refer to the separate " Preparation and Operation ".

- Example

Gets the default setting for "GENERAL (0)".

111)PIT:DEL command (Position registration 1 : Delete)

- Description

Delete the registered location information contents.

- Command format

Send) PIT:DEL,n

- Parameters

Send) n : Location information registration number $1 \sim 20$

- Example

Delete the registration details of registration number 1.

| Send | Reply |
| :--- | :--- |
| PIT:DEL,1 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
112)PIT:SET command (Position registration 2 : Registration)

- Description

Registers the current position with the specified registration number.
*) If the power of this device is turned off, reset, or the memory switch that automatically restarts is changed, the registered position will be discarded.

- Command format

Send) PIT:SET,n

- Parameters

Send) n : Location information registration number $1 \sim 20$

- Example

Registers the current position as registration number 1.

| Send | Reply |
| :--- | :--- |
| PIT:SET,1 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
113)PIT:GET command (Position registration 3 : Get)

- Description

Get the registered location information content.
*) If the counter is set to zero after registering with the "PIT_SET:" command, the coordinate value obtained by this command will be the calculation result of the registered position and the coordinate value immediately before zero setting.

- Command format

Send) PIT:GET,n
Reply) c1,c2,c3

- Parameters

Send) n : Location information registration number $1 \sim 20$
Reply) c1: 1st axis coordinate value (unit: pls)
c2 : 2nd axis coordinate value (unit: pls)
c3: 3rd axis coordinate value (unit: pls)

## - Example

Get the location of registration number 3.

| Send | Reply | Contents |
| :---: | :---: | :--- |
| PIT:GET,3 | $10000,5000,10$ | Coordinate values are registered as +10000 pls for <br> the 1st axis, +5000 pls for the 2nd axis, and +10 pls <br> for the 3rd axis. |

114)PIT:G command (Position registration 4 : Operation 1)

- Description

Moves to the position registered in the specified location information registration number.
*) Since the position is not based on the zero of the coordinate value, the registered position does not change even if the counter is set to zero.
*) If the power of this device is turned off, reset, or the memory switch that automatically restarts is changed, the registered position will be discarded.

- Command format

Send) PIT:G,n

- Parameters

Send) n : Location information registration number $1 \sim 20$

- Example

Moves to the coordinate value registered in registration number 5.

| Send | Reply |
| :--- | :--- |
| PIT:G,5 | OK or NG |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
115)PIT:GRT command (Position registration 5 : Operation order 2 : Completion reply)

- Description

It moves to the location registered in the specified location information registration number and replies to each axis after completion.
*) Since the position is not based on the zero of the coordinate value, the registered position does not change even if the counter is set to zero.
*) If the power of this device is turned off, reset, or the memory switch that automatically restarts is changed, the registered position will be discarded.

- Command format

Send) PIT:GRT,n
Reply) r

- Parameters

Send) n : Location information registration number $1 \sim 20$
Reply) $r$ : Positioning complete axis 1 or 2 or 3

- Example

Move to the position registered in registration number 5, and the operation is completed in the order of the 2nd axis and the 1st axis.

| Send | Reply | Reply after the operation is completed |
| :---: | :--- | :--- |
| PIT:GRT,5 | OK or NG | 2 |
|  |  | 1 |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
116)PAV:DEL command (Coordinate value registration 1 : Delete)

- Description

The registered coordinate value information content is deleted from the main memory of the controller.

- Command format

Send) PAV:DEL,n

- Parameters

Send) n : Coordinate value information registration number $1 \sim 20$

- Example

Delete the registration details of registration number 1.

| Send | Reply |
| :--- | :--- |
| PAV:DEL,1 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
117)PAV:SET command (Coordinate value registration 2 : Registration)

- Description

Registers the current coordinate values in the controller's main memory to the specified registration number.

- Command format

Send) PAV:SET,n

- Parameters

Send) n: Coordinate value information registration number $1 \sim 20$

- Example

Register the current coordinate value in registration number 1.

| Send | Reply |
| :--- | :--- |
| PAV:SET,1 | OK or NG |

*) In the case of Busy, it will be "NG" and this command cannot be executed.
118)PAV:GET command (Coordinate value registration 3 : Get)

- Description

Get the registered coordinate value information contents from the main memory of the controller.

- Command format

Send) PAV:GET,n
Reply) c1,c2,c3

- Parameters

Send) n : Coordinate value information registration number $1 \sim 20$
Reply) c1: 1st axis coordinate value (unit: pls)
c2 : 2nd axis coordinate value (unit: pls)
c3: 3rd axis coordinate value (unit: pls)

- Example

Get the coordinate value of registration number 3.

| Send | Reply | Contents |
| :---: | :---: | :--- |
| PAV:GET,3 | $10000,5000,10$ | Coordinate values are registered as +10000 pls for <br> the 1st axis, +5000 pls for the 2nd axis, and +10 pls <br> for the 3rd axis. |

119)PAV:G command(Coordinate value registration 4 : Operation 1)

- Description

Moves to the position registered in the specified coordinate value information registration number.

- Command format

Send) PAV:G,n

- Parameters

Send) n : Coordinate value information registration number 1 ~ 20

- Example

Moves to the coordinate value registered in registration number 5.

| Send | Reply |
| :--- | :--- |
| PAV: G,5 | OK or NG |

*) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.
120)PAV:GRT command (Coordinate value registration 5 : Operation 2 : Completion reply)

- Description

It moves to the position registered in the specified coordinate value information registration number, and replies for each axis after completion.

- Command format

Send) PAV:GRT,n
Reply) r

- Parameters

Send) n : Coordinate value information registration number $1 \sim 20$
Reply) $r$ : Positioning complete axis $\quad 1$ or 2 or 3

- Example

Move to the coordinate value registered in registration number 5 , and the operation is completed in the order of the 2 nd axis and the 1st axis.

| Send | Reply | Reply after the operation is completed |
| ---: | :--- | :--- |
| PAV:GRT,5 | OK or NG | 2 |
|  |  | 1 |

[^11]
[^0]:    

    Caution
    Be sure to ground the ground terminal of the power cable.

[^1]:    *) When turned ON, current flows through the transistor of the photocoupler in the SHRC-203.
    *) Be sure to insert a current limiting resistor.

[^2]:    ${ }^{*}$ ) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.

[^3]:    *) In the case of the motor excitation is OFF, it will be "NG" and this command cannot be executed.

[^4]:    *) In the case of Busy, it will be "NG" and this command cannot be executed.

[^5]:    *) In the case of Busy, it will be "NG" and this command cannot be executed.

[^6]:    - Parameters

    Send) n: Program number 1~4000
    p : Driving pattern EH
    as1: 1st axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
    as2 : 2nd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
    as3 : 3rd axis state $\quad 0$ (axis invalid) or 1 (axis controllable)
    *) Enable 2 axes of circle interpolation axis. If all are enabled, a command error will occur.
    cm : Circle mode
    4 Specifying a passing point CW rotation direction
    5 Specifying a passing point CCW rotation direction
    p1: Passing point coordinate value -999,999,999 ~ 999,999,999 pls
    ${ }^{*}$ ) It is the center point coordinate value of the axis ( X axis) with 2 axes enabled in as 1 to 3 and the axis number is small, and is the relative position from the current position.
    p2 : Passing point coordinate value -999,999,999 ~ 999,999,999 pls
    ${ }^{*}$ ) It is the center point coordinate value of the axis ( Y axis) with the larger axis number on the 2 axes enabled in as $1 \sim 3$, and is the relative position from the current position.
    e1: End point coordinate value -999,999,999 ~ 999,999,999 pls
    ${ }^{*}$ ) It is the center point coordinate value of the axis ( X axis) with 2 axes enabled in as 1 to 3 and the axis number is small, and is the relative position from the current position.
    e2 : End point coordinate value -999,999,999 ~ 999,999,999 pls
    *) It is the center point coordinate value of the axis ( Y axis) with the larger axis number on the 2 axes enabled in as $1 \sim 3$, and is the relative position from the current position.
    hl : Linear destination coordinate value -999,999,999~999,999,999 pls
    *) The linear movement destination coordinate value of the axis ( $Z$ axis) disabled in as1 to 3 , which is the relative position from the current position.
    o: General-purpose output instruction $0 \sim 63$
    $s$ : Operating speed $\quad 1 \sim 4$ (Minimum velocity of $\mathrm{p} 1, \mathrm{e} 1$ axis (S))
    w : Wait time $\quad 0 \sim 2560$ ( 0.1 sec unit)
    tm : Trigger mode 0 Drive pulse designation
    1 Specify a certain time
    2 + Scale pulse designation
    3 - Scale pulse designation
    4 One-shot trigger designation
    *) Output after positioning of all effective axes
    5 Trigger issuance prohibited
    6 Take over the previous trigger setting
    *) When specifying the drive pulse, + scale pulse, andscale pulse, set the set speed to 56 kpps or less.
    ta : Trigger target axis
    1~3
    tv : Trigger output interval Trigger mode 0:2~30000 pls
    Trigger mode 1: $1 \sim 10000$ ( 0.01 sec uint)
    Trigger mode 2,3 : $\pm 2$ ~ 30000 pls

[^7]:    *) In the case of Busy, it will be "NG" and this command cannot be executed.

[^8]:    *) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.

[^9]:    *) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.

[^10]:    *) The distance traveled per pulse must be the same between the interpolation axes. If they are different, the correct interpolation operation will not be performed.

    - Command format

    Send) KP:m1u1c1,m2u2c2,m3u3c3,s,f,r

    - Parameters

    Send)m1: 1st Sign setting
    m2: 2nd Sign setting
    m3: 3rd Sign setting

    + or-(If there is no sign, it will be "+")
    u1: 1st Unit setting
    u2 : 2nd Unit setting
    u3: 3rd Unit setting
    $\mathrm{N} / \mathrm{U} / \mathrm{M} / \mathrm{D}$ (If there is no unit specified, it is judged as pls)
    c1: 1st Set movement amount
    c2 : 2nd Set movement amount
    c3:3rd Set movement amount
    N Setting range : Value of pls converted to nm
    (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
    $U$ Setting range : Value of pls converted to $\mu \mathrm{m}$
    (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
    M Setting range : Value of pls converted to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls}$ )
    D Setting range : The value of pls converted to an degree (Example: D0.001 when the scale resolution is $0.000001^{\circ}$ at 1,000 pls)
    Not specified Setting range: 0 ~ 999,999,999 (Unit: pls)
    $s$ : Minimum speed setting
    f: Maximum speed setting
    No unit specified Setting range: 1 to 1,000,000 (unit: pls / s)
    Unit specification N Setting range: Value obtained by converting pls / s to nm (Example: N 1000 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
    Unit specification U Setting range: Value obtained by converting pls / s to $\mu \mathrm{m}$ (Example: U1 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
    Unit specification M Setting range: Value obtained by converting pls / s to mm (Example: M0.001 when the scale resolution is 1 nm at $1,000 \mathrm{pls} / \mathrm{s}$ )
    Unit specification D Setting range: Value obtained by converting pls / s to an angle (Example: D0.001 when the scale resolution is $0.000001^{\circ}$ at $1,000 \mathrm{pls} / \mathrm{s}$ )
    *) Set only for axes with a small axis number.
    *) The unit of the axis with the smaller axis number is reflected in the speed setting.
    *) The maximum speed should be greater than or equal to the minimum speed.
    $r$ : Acceleration / deceleration time setting
    Setting range : $1 \sim 1,000 \mathrm{~ms}$
    *) Set only for axes with a small axis number.

[^11]:    *) In the case of Busy or the motor excitation is OFF, it will be "NG" and this command cannot be executed.

