型号: NMC1200R

硬件手册

前言

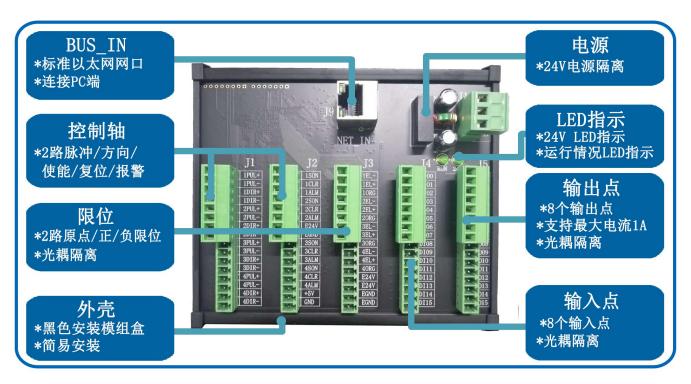
尊敬的客户:

欢迎选用本公司运动控制卡

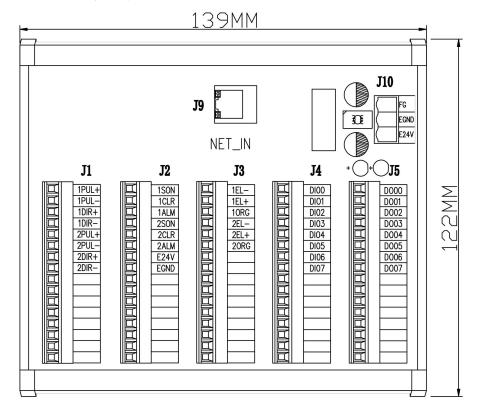
为了回报客户,我们将提供一流的运动控制器,高效的技术支持,完善的售后 服务,帮助你建立自己的控制系统。

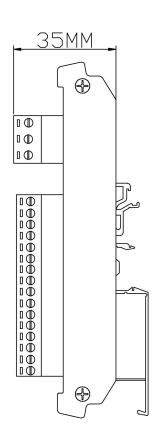
本使用手册主要对运动控制卡的软件应用等内容作全面介绍,本使用手册提供了使用本运动控制卡所需知识及注意事项,请在熟知本产品的安全注意事项后使用。

由于产品的改进,规格、编写版本的变更等原因,会有适当的改动,恕不另行通知。


不承担由于使用本手册或本产品不当,所造成直接的、间接的、特殊的、附带的或相应产生的损失或责任。

目录


第1章	运动控制卡硬件介绍·····	4
1.1	功能介绍	4
1.2	安装尺寸	4
1.3	端子定义	5
1.4	应用	5
第2章	运动控制卡接口简介	6
2.1	通用输入数字接口	6
2.2	通用输出数字接口	6
2.3	脉冲输出接口电路	7
2.4	专用 I/O 接口电路······	7
	2.4.1 原点信号输入接口	7
	2.4.2 限位信号输入接口	8
2.5	伺服电机启动器控制信号接口	8
	2.5.1 驱动器使能信号	8
	2.5.2 驱动器报警信号	9
	2.5.3 驱动器报警复位信号	9
第3章	运动控制卡与各类驱动器接线方法	···· 10
3.1	运动控制卡与伺服驱动器接线方式	10


第1章 运动控制卡硬件介绍

1.1 功能介绍

1.2 安装尺寸

1.3 端子定义

电源端子

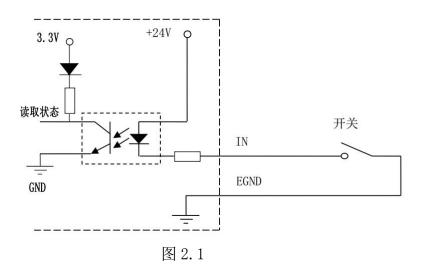
PIN		J10 说明					
1	FG	大地输入	网口、铁壳屏蔽				
2	EGND	24V地输入	报警/复位/正/负/原点限位				
3	E24V	24V输入	输入输出/				

网口通信端子

1			NET_IN			
	单卡使用		电脑网络输入			
8		最后一个	前面卡的 NET_OUT			

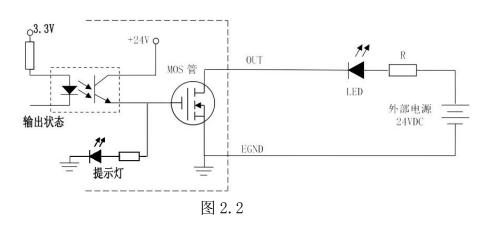
16PIN端子

		PIN		J1		J2		Ј3		J4		J5
	1	1	1PUL+	脉冲+输出0	1S0N	伺服使能输出0	1EL-	负限位0输入	DIOO	输入00	D000	输出00
		2	1PUL-	脉冲-输出0	1CLR	报警复位输出0	1EL+	正限位0输入	DIO1	输入01	D001	输出01
		3	1DIR+	方向+输出0	1ALM	报警输入0	10RG	原点0输入	DI02	输入02	D002	输出02
		4	1DIR-	方向-输出0	2SON	伺服使能输出1	2EL-	负限位1输入	DI03	输入03	D003	输出03
		5	2PUL+	脉冲+输出1	2CLR	报警复位输出1	2EL+	正限位1输入	DI04	输入04	D004	输出04
		6	2PUL-	脉冲-输出1	2ALM	报警输入1	20RG	原点1输入	DI05	输入05	D005	输出05
		7	2DIR+	方向+输出1	E24V	24V输出			DI06	输入06	D006	输出06
		8	2DIR-	方向-输出1	EGND	24V地输出		80 80	DI07	输入07	D007	输出07
		9										
		10										
	Ī	11										
10-		12										
		13										
		14										
	16	15										
		16						10.				

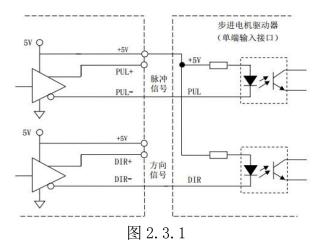

1.4 应用

- ◆ 半导体封装设备、PCB 加工设备;
- ◆ 激光切割、焊接设备、雕刻设备;
- ◆ 检测测量设备、冶金加工设备、纺织设备;
- ◆ 其他标准和非标准自动化设备;

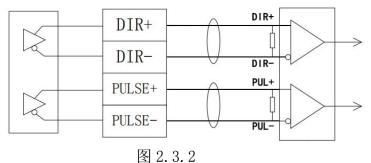
第2章 运动控制卡接口简介


2.1 通用输入数字接口

运动控制卡通用数字输入信号。所有输入接口均加有光电隔离元件,可以有效隔离外部电路的干扰,以提高系统的可靠性。通用数字输入信号接口原理图如图 2.1 所示

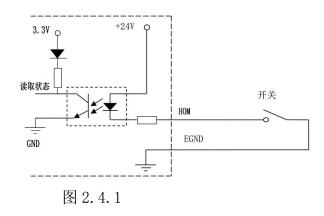

2.2 通用输出数字接口

运动控制卡通用数字输出信号,由 MOS 管驱动,其最大工作电流为 1A,可用于控制继电器、电磁阀、信号灯或其它设备,如图 2.2。

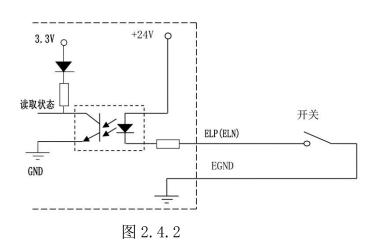


2.3 脉冲输出接口电路

运动控制卡上的端口配备有 5V 的电源信号,当电机的驱动器的单端输入接口时,可使用+5V 和 PUL-端口输出脉冲信号,使用+5V 和 DIR-端口输出方向信号;


当电机驱动器为差分输入接口时,使用 PUL+和 PUL-输出脉冲信号,使用 DIR+和 DIR-输出方向信号。

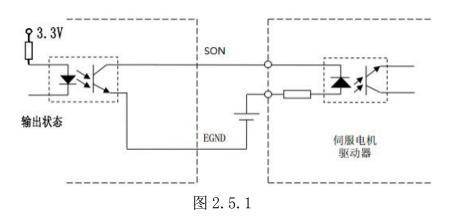
2.4 专用I/0接口电路


2.4.1 原点信号输入接口

运动控制卡提供了原点位置传感器信号的输入端口 HOM,原点信号由 HOM 输入端口接入运动控制卡后,经过光耦后进入微处理器。光电隔离电路可以有效地将外部干扰信号隔离在控制卡之外,有效地提高了系统的可靠性;电路如图 2.4.1;

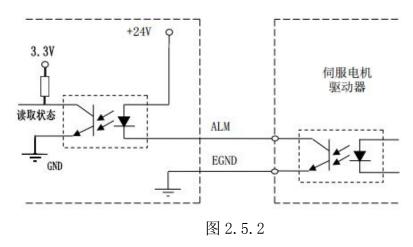
2.4.2 限位信号输入接口

运动控制卡提供了机械限位信号输入端口,每个轴分别有 ELP(正向限信号),ELN(负向限信号)信号输入端口;当运动平台触发限位开关时,ELP或 ELN即有效,控制卡将禁止运动平台继续向前运动。限位信号接口电路如图 2.4.2 所示;

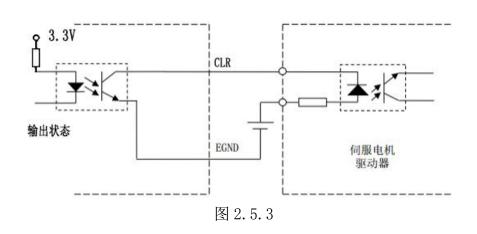


注意事项:用户需根据使用的限位开关类型来设置限位开关的有效工作电平。当使用常开型限位开关时,应通过软件选择 ELP、ELN 信号为低电平有效;当使用常闭型限位开关时,应选择 ELP、ELN 信号为高电平有效。

2.5 伺服电机启动器控制信号接口


2.5.1 驱动器使能信号

当伺服电机驱动器的 SON 信号为无效状态时,伺服电机驱动器不工作,电机处于自由状态; 当 SON 信号有效时,伺服电机驱动器进入工作状态,电机锁紧。其接口电路原理图如图 2.5.1 所示。

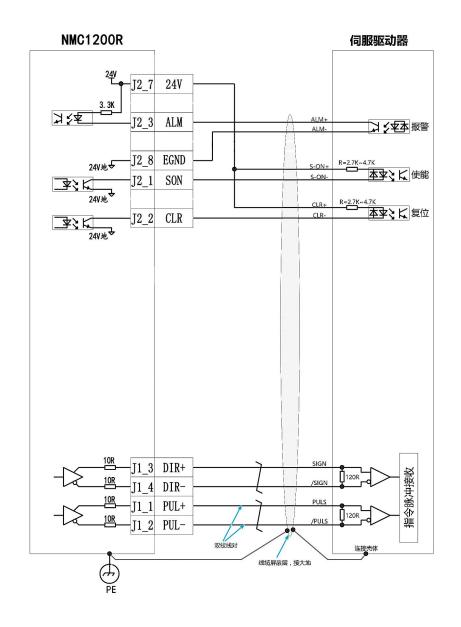

2.5.2 驱动器报警信号

ALM 信号是伺服电机驱动器发出的报警信号。当运动控制卡接收到 ALM 信号后,将立即中 止发送运动指令脉冲,或先减速再停止发送脉冲。其接口电路原理图如图 2.5.2 所示。

2.5.3 驱动器报警复位信号

运动控制卡提供了用于复位伺服驱动位置报警的 CLR 信号输出接口。典型接口及接线原理如图 2.5.3。

第3章 运动控制卡与各类驱动器接线方法


3.1 运动控制卡与伺服驱动器接线方式

驱动接口包含: 脉冲方向输出信号、编码器输入信号、专用 IO 信号。

专用信号包括:报警信号,电机到位信号,使能信号,报警清除(复位)信号。

脉冲方向信号是低压、高速、差分线驱动信号,可以直接驱动符合 RS422 物理层规范的接收器(常见于伺服驱动器),也可以驱动可接收差分信号的光耦(常见于步进驱动器)。对于使用单端光耦信号的步进驱动器,需要根据实际情况调整线缆接线方法。

运动控制卡与驱动器间的接线需要根据不同的驱动器产品来确定。下图是控制卡与伺服驱动器的典型接线方式。

