型号: NMC5800

硬件手册

前言

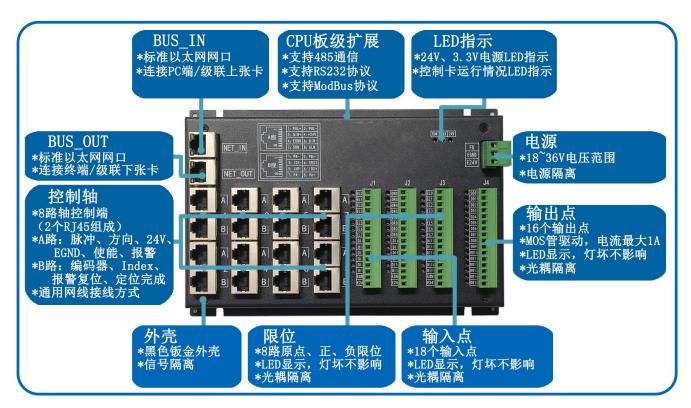
尊敬的客户:

欢迎选用本公司运动控制卡

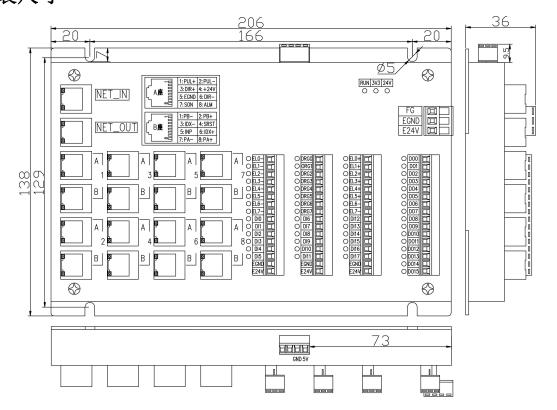
为了回报客户,我们将提供一流的运动控制器,高效的技术支持,完善的售后 服务,帮助你建立自己的控制系统。

本使用手册主要对运动控制卡的软件应用等内容作全面介绍,本使用手册提供了使用本运动控制卡所需知识及注意事项,请在熟知本产品的安全注意事项后使用。

由于产品的改进,规格、编写版本的变更等原因,会有适当的改动,恕不另行通知。


不承担由于使用本手册或本产品不当,所造成直接的、间接的、特殊的、附带的或相应产生的损失或责任。

目录


第1章	运动控制卡硬件介绍	4
1.1	L 功能介绍······	4
1.2	2 安装尺寸	4
1.3	3 端子定义	5
1.4	1 应用	6
第2章	运动控制卡接口简介	7
2.1	L 通用输入数字接口	7
2.2	2 通用输出数字接口	7
2.3	3 脉冲输出接口电路	8
2.4	1 编码器接口电路·······	8
	2.4.1 编码器信号输入	8
	2.4.2 编码器信号输入接口电路	9
2.5	5 专用 I/O 接口电路·······	····10
	2.5.1 原点信号输入接口	···· 10
	2.5.2 限位信号输入接口	···· 10
2.6	5 伺服电机启动器控制信号接口	··· 11
	2.6.1 驱动器使能信号	···· 11
	2.6.2 驱动器报警信号	···· 11
	2.6.3 驱动器报警复位信号	11
第3章	运动控制卡与各类驱动器接线方法	··· 12
3.1	L 运动控制卡与伺服驱动器接线方式	··· 12

第1章 运动控制卡硬件介绍

1.1 功能介绍

1.2 安装尺寸

1.3 端子定义

电源端子

PIN	J5		说明
1	FG	大地输入	网口、铁壳屏蔽
2	EGND	24V地输入	报警/复位/正/负/原点限位
3	E24V	24V输入	输入输出/

网口通信端子

			NET_IN	NET_OUT
LAE III.	单卡使用		电脑网络输入	水晶头
· · · · · · · · · · · · · · · · · · ·	多卡使用	第一个	电脑网络输入	后面卡的 NET_IN
		中间	前面卡的 NET_OUT	后面卡的 NET_IN
		最后一个	前面卡的 NET_OUT	水晶头

RJ45端子

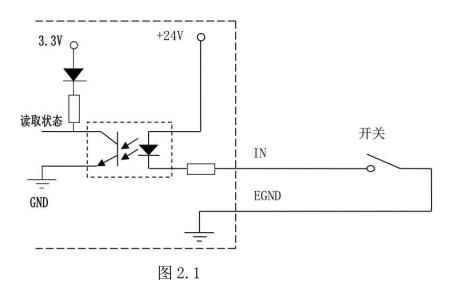
	PIN	网线		A	В		
	1	橙白	PUL+	脉冲+输出	PB-	编码器B-输入	
Tal.	2	橙	PUL-	脉冲-输出	PB+	编码器B+输入	
	3	绿白	DIR+	方向+输出	IDX-	编码器Z-输入	
	4	蓝	E24V	24V输出	SRST	报警复位输出	
Le manuel 1	5	蓝白	EGND	24V地输出	INP	定位完成输入	
	6	绿	DIR-	方向-输出	IDX+	编码器Z+输入	
	7	棕白	SON	伺服使能输出	PA-	编码器A-输入	
	8	棕	ALM	报警输入	PA+	编码器A+输入	

16PIN端子

	PIN		J1		J2	Ј3		J4	
	1	ELO-	负限位0输入	ORGO	原点0输入	ELO+	正限位0输入	D000	输出00
	2	EL1-	负限位1输入	ORG1	原点1输入	EL1+	正限位1输入	D001	输出01
	3	EL2-	负限位2输入	ORG2	原点2输入	EL2+	正限位2输入	D002	输出02
	4	EL3-	负限位3输入	ORG3	原点3输入	EL3+	正限位3输入	D003	输出03
	5	EL4-	负限位4输入	ORG4	原点4输入	EL4+	正限位4输入	D004	输出04
	6	EL5-	负限位5输入	ORG5	原点5输入	EL5+	正限位5输入	D005	输出05
	7	EL6-	负限位6输入	ORG6	原点6输入	EL6+	正限位6输入	D006	输出06
	8	EL7-	负限位7输入	ORG7	原点7输入	EL7+	正限位7输入	D007	输出07
	9	DIOO	输入00	DI06	输入06	DI12	输入12	D008	输出08
70-	10	DIO1	输入01	DIO7	输入07	DI13	输入13	D009	输出09
	11	DI02	输入02	DI08	输入08	DI14	输入14	D010	输出10
	12	DI03	输入03	DI09	输入09	DI15	输入15	D011	输出11
	13	DIO4	输入04	DI10	输入10	DI16	输入16	D012	输出12
	14	DI05	输入05	DI11	输入11	DI17	输入17	D013	输出13
	15	EGND	24V地输出	EGND	24V地输出	EGND	24V地输出	D014	输出14
	16	E24V	24V输出	E24V	24V输出	E24V	24V输出	D015	输出15

4PIN端子

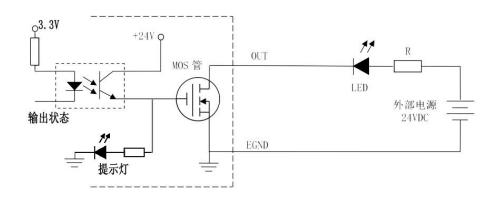
	PIN		J5	说明
	1	5V	5V输出	脉冲/方向/编码器ABZ
GND 5V	2	GND	5V地输出	加什/刀門/細玛菇ADZ
	3	NC		
	4	NC		


1.4 应用

- ◆ 半导体封装设备、PCB 加工设备;
- ◆ 激光切割、焊接设备、雕刻设备;
- ◆ 检测测量设备、冶金加工设备、纺织设备;
- ◆ 其他标准和非标准自动化设备;

第2章 运动控制卡接口简介

2.1 通用输入数字接口


运动控制卡通用数字输入信号。所有输入接口均加有光电隔离元件,可以有效隔离外部电路的干扰,以提高系统的可靠性。通用数字输入信号接口原理图如图 2.1 所示

2.2 通用输出数字接口

运动控制卡通用数字输出信号,由 MOS 管驱动,其最大工作电流为 1A,可用于控制继电器、电磁阀、信号灯或其它设备,如图 2.2。

图 2.2

2.3 脉冲输出接口电路

运动控制卡上的端口配备有 5V 的电源信号,当电机的驱动器的单端输入接口时,可使用+5V 和 PUL-端口输出脉冲信号,使用+5V 和 DIR-端口输出方向信号;

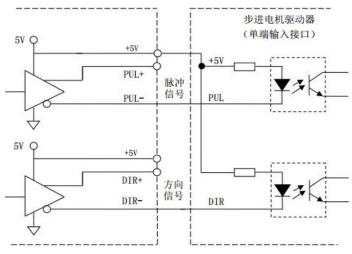


图 2.3.1

当电机驱动器为差分输入接口时,使用 PUL+和 PUL-输出脉冲信号,使用 DIR+和 DIR-输出方向信号。

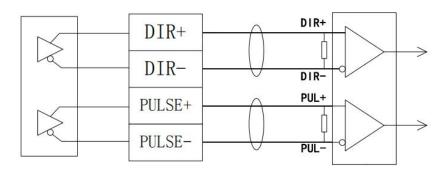
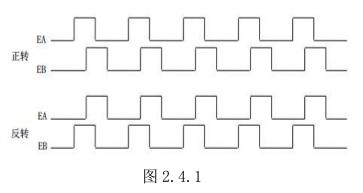



图 2.3.2

2.4 编码器接口电路

2.4.1 编码器信号输入

运动控制卡卡支持 AB 相正交信号输入模式。

在这种模式下, EA 脉冲信号超前或滞后 EB 脉冲信号 90 度,而这种超前或滞后代表电机的运转方向。如图 2.4.1 所示,当 EA 信号超前 EB 信号 90°时,被视为正转;当 EB 信号超前 EA 信号 90°时,被视为反转。

2.4.2 编码器信号输入接口电路

使用差分输出的编码器,输入信号的正端接 EA+(或 EB+, EZ+)端,负端接 EA-(或 EB-, EZ-)端。如图 2.4.2.1

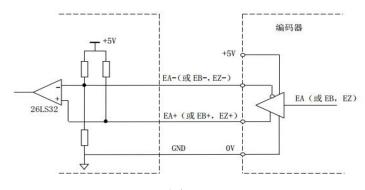


图 2.4.2.1

使用集电极开路输出的编码器,则编码器输出信号接 EA+(或 EB+, EZ+)端,而 EA-(或 EB-, EZ-)端悬空。如 2. 4. 2. 2 所示。

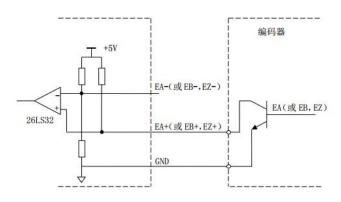
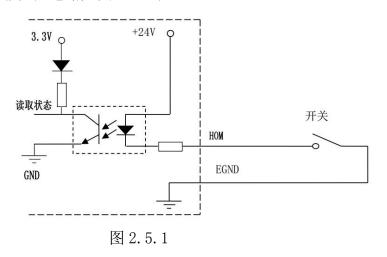
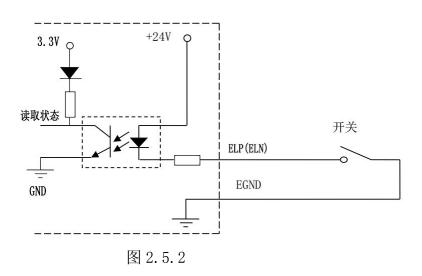


图 2.4.2.2


注意事项:

- 编码器等脉冲输入信号的 EA+、EA-、EB+、EB-和 EZ+、EZ-的差分信号电压差必须高于 3.5V, 小于 5V, 且输出电流不应小于 6mA。
- 需要将输入设备的地线和控制卡的 GND 连接。

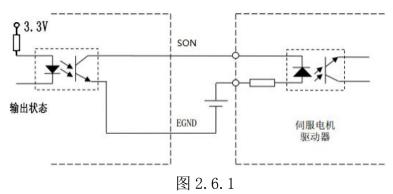
2.5 专用I/0接口电路


2.5.1 原点信号输入接口

运动控制卡提供了原点位置传感器信号的输入端口 HOM,原点信号由 HOM 输入端口接入运动控制卡后,经过光耦后进入微处理器。光电隔离电路可以有效地将外部干扰信号隔离在控制卡之外,有效地提高了系统的可靠性;电路如图 2.5.1;

2.5.2 限位信号输入接口

运动控制卡提供了机械限位信号输入端口,每个轴分别有 ELP(正向限信号),ELN(负向限信号)信号输入端口;当运动平台触发限位开关时,ELP或 ELN即有效,控制卡将禁止运动平台继续向前运动。限位信号接口电路如图 2.5.2 所示;



注意事项:用户需根据使用的限位开关类型来设置限位开关的有效工作电平。当使用常开型限位开关时,应通过软件选择 ELP、ELN 信号为低电平有效;当使用常闭型限位开关时,应选择 ELP、ELN 信号为高电平有效。

2.6 伺服电机启动器控制信号接口

2.6.1 驱动器使能信号

当伺服电机驱动器的 SON 信号为无效状态时,伺服电机驱动器不工作,电机处于自由状态; 当 SON 信号有效时,伺服电机驱动器进入工作状态,电机锁紧。其接口电路原理图如图 2.6.1 所示。

2.6.2 驱动器报警信号

ALM 信号是伺服电机驱动器发出的报警信号。当运动控制卡接收到 ALM 信号后,将立即中 止发送运动指令脉冲,或先减速再停止发送脉冲。其接口电路原理图如图 2.6.2 所示。

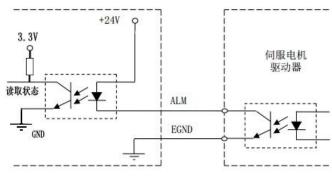
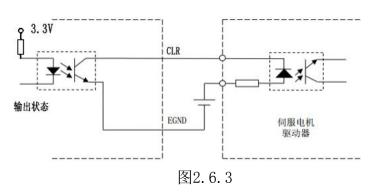
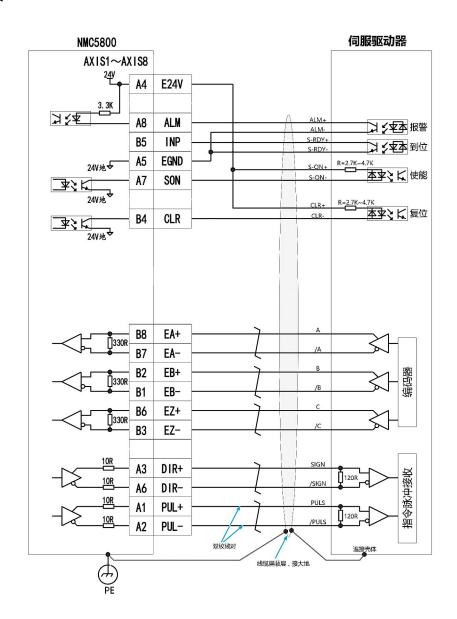



图 2.6.2

2.6.3 驱动器报警复位信号

运动控制卡提供了用于复位伺服驱动位置报警的 CLR 信号输出接口。典型接口及接线原理如图 2.6.3。

第3章 运动控制卡与各类驱动器接线方法


3.1 运动控制卡与伺服驱动器接线方式

驱动接口包含: 脉冲方向输出信号、编码器输入信号、专用 IO 信号。

专用信号包括:报警信号,电机到位信号,使能信号,报警清除(复位)信号。

脉冲方向信号是低压、高速、差分线驱动信号,可以直接驱动符合 RS422 物理层规范的接收器(常见于伺服驱动器),也可以驱动可接收差分信号的光耦(常见于步进驱动器)。对于使用单端光耦信号的步进驱动器,需要根据实际情况调整线缆接线方法。

运动控制卡与驱动器间的接线需要根据不同的驱动器产品来确定。下图为控制卡与伺服驱动器的典型接线方式。

